JCB:重要核膜蛋白的作用机制

Stowers医学研究所的研究人员在活细胞中进行观察,向人们展示了重要核膜蛋白的作用机制。 Ndc1蛋白非常保守,出现在从酵母到人类的各种生物中。在细胞核膜上,嵌有这种蛋白的地方会形成孔。对于酵母来说,这样的孔会形成两个必要的细胞结构:核孔复合体和纺锤体极体。纺锤体极体负责锚定细胞骨架的纤维,在细胞分裂时将染色体拉到两边。为了确保遗传物质正确分配,每当细胞准备分裂时,就必须建立新的核孔复合体和纺锤体极体。 Sue Jaspersen博士领导的研究团队发现,Ndc1与Mps3蛋白的相互作用,掌管着Ndc1在核膜上的分配。文章于二月十日发表在Journal of Cell Biology杂志上。“蛋白插入位点过多或者过少,都会导致灾难性的结果,”Jaspersen说。 Ndc1蛋白对于细胞的生存至关重要,但由于细胞对于Ndc1的改变过于敏感,此前人们对这一蛋白的作用机制并不太了解。研究蛋白功能的传统遗传学策......阅读全文

JCB:重要核膜蛋白的作用机制

  Stowers医学研究所的研究人员在活细胞中进行观察,向人们展示了重要核膜蛋白的作用机制。   Ndc1蛋白非常保守,出现在从酵母到人类的各种生物中。在细胞核膜上,嵌有这种蛋白的地方会形成孔。对于酵母来说,这样的孔会形成两个必要的细胞结构:核孔复合体和纺锤体极体。纺锤体极体负责锚定细胞骨架的纤

核孔复合体的功能

  核孔复合体的功能是核质交换的双向选择性亲水通道,是一种特殊的跨膜运输的蛋白质复合体。他具有双功能和双向性。双功能表现在两种运输方式:被动扩散与主动运输。双向性表现在既介导蛋白质的入核运输,又介导RNA RNP等的出核运输。  1949-1950年间,H.G.Callan与S.G.Tomlin在用

核孔复合体的结构

  核孔复合体是指镶嵌在核孔上的一种复杂的结构。主要有以下四种结构组分:  1.胞质环:位于核孔边缘的胞质面一侧,又称外环;  2.核质环:位于核孔边缘的核质面一侧,又称内环;  3.辐:由核孔边缘伸向中心,呈辐射状八重对的纤维;  4.栓:又称中央栓。位于核孔中心,呈颗粒状或棒状。  核孔复合体对

核孔复合体的定义

  核孔复合体是镶嵌在内外核膜上的蓝状复合体结构,主要由胞质环、核质环、核蓝等结构与组成,是物质进出细胞核的通道。  细胞核的核膜上呈复杂环状结构的通道,对细胞核与细胞质之间的物质交换有一定调节作用。亦称为核膜孔或核孔。  结构上,核孔复合体主要由蛋白质构成;功能上,核孔复合体可以看做是一种特殊的跨

新研究揭示核孔复合体转运核糖体前体的分子机制

NPC(核孔复合体)是细胞内最庞大、最复杂的分子机器之一,是介导生物大分子进行核质转运的唯一通道,参与细胞内众多重要的生命活动,其功能的紊乱能够引起包括癌症在内的多种严重的疾病。近年来,通过整合冷冻电镜技术、X射线晶体学、质谱学和人工智能等技术,NPC的三维结构正在逐步得到解析。然而,关于其核质转运

核孔复合体的功能及定义

  功能  核孔复合体的功能是核质交换的双向选择性亲水通道,是一种特殊的跨膜运输的蛋白质复合体。他具有双功能和双向性。双功能表现在两种运输方式:被动扩散与主动运输。双向性表现在既介导蛋白质的入核运输,又介导RNA RNP等的出核运输。  1949-1950年间,H.G.Callan与S.G.Toml

核孔复合体的结构及功能

  结构  核孔复合体是指镶嵌在核孔上的一种复杂的结构。主要有以下四种结构组分:  1.胞质环:位于核孔边缘的胞质面一侧,又称外环;  2.核质环:位于核孔边缘的核质面一侧,又称内环;  3.辐:由核孔边缘伸向中心,呈辐射状八重对的纤维;  4.栓:又称中央栓。位于核孔中心,呈颗粒状或棒状。  核孔

核孔复合体外环结构研究获进展

  2022年1月11日,中国科学院生物物理研究所生物大分子国家重点实验室孙飞课题组联合北京大学张传茂课题组等,在爪蟾核孔复合体外环结构研究方面取得了最新成果。相关研究成果以8 Å structure of the outer rings of the Xenopus laevis nuclear

核孔复合体外环结构研究获进展

  2022年1月11日,中国科学院生物物理研究所生物大分子国家重点实验室孙飞课题组联合北京大学张传茂课题组等,在爪蟾核孔复合体外环结构研究方面取得了最新成果。相关研究成果以8 Å structure of the outer rings of the Xenopus laevis nuclear

什么是纺锤体?

  纺锤体(Spindle Apparatus),形似纺锤,是产生于细胞分裂前初期(Pre-Prophase)到末期(Telophase)的一种特殊细胞器。其主要元件包括微管(Microtubules),附着微管的动力分子分子马达(Molecular motors),以及一系列复杂的超分子结构。一般

什么是纺锤体?

纺锤体(Spindle Apparatus),形似纺锤,是产生于细胞分裂前初期(Pre-Prophase)到末期(Telophase)的一种特殊细胞器。其主要元件包括微管(Microtubules),附着微管的动力分子分子马达(Molecular motors),以及一系列复杂的超分子结构。一般来讲

纺锤体的功能分解

在细胞分裂中,其主要作用有两个部分。其一为排列与分裂染色体。纺锤体的完整性决定了染色体分裂的正确性。纺锤体的正常生成是染色体排列的必要条件。纺锤体生成完毕后一般会有5-20分钟的延迟,以供细胞调整着丝点上微管束的极性,以及决定是否所有的着丝点都附着正确。此后细胞进入分裂后期,染色体分裂为两组数目相等

核膜的裂解与重建

  准备期  在细胞间期的G2期,核膜表面积增加,核孔复合体数量增加一倍。在真核生物中,如酵母,在细胞分裂过程中,核膜保持完整。纺锤体纤维要么在膜内形成,要么穿透膜但不将其撕裂。在其他真核生物(动物和植物)中,核膜必须在有丝分裂的前期阶段分解,使有丝分裂纺锤体纤维能够进入其中的染色体。裂解和重建的具

核内纺锤体的概念

中文名称核内纺锤体英文名称intranuclear spindle定  义酵母和原生动物营养阶段进行核内有丝分裂时,在核内形成的纺锤体。纺锤体极端无中心粒,而代之以由电子致密物质构成的纺锤体斑。应用学科细胞生物学(一级学科),细胞周期与细胞分裂(二级学科)

纺锤体的生产方式

在含中心体的细胞中,纺锤体的生成开始于细胞分裂前初期 - 即在细胞核膜分解(Nuclear Envelope Breakdown, NEB)之前。初期的结构为两个独立的以中心体为核的星状体(asters)。当细胞核膜分解后,染色体和星状体发生一系列复杂的互动反应。最终结果为所有的染色体在纺锤体的中央

纺锤体的生成相关介绍

  在含中心体的细胞中,纺锤体的生成开始于细胞分裂前初期  -即在细胞核膜分解(Nuclear Envelope Breakdown, NEB)之前。初期的结构为两个独立的以中心体为核的星状体(asters)。当细胞核膜分解后,染色体和星状体发生一系列复杂的互动反应。最终结果为所有的染色体在纺锤体的

关于多极纺锤体的概述

  在有丝分裂时纺锤体一般有二个极。但是在多精入卵的卵细胞、肿瘤细胞、培养的HeLa细胞、杂种细胞等,随着条件不同可形成有3、4个或者更多个极的纺锤体。当存在多极纺锤体时,染色体的后期分配便不规则,可形成几个小核。用低浓度的秋水仙碱等药物处理也能诱导出同样的变化。木贼等特殊的植物体或胚乳细胞,往往在

有丝分裂纺锤体的形成

  由微管蛋白聚合成纺锤体微管的过程。微管蛋白的聚合有两种基本形式:一种是自我装配型,另一种是位点起始装配型,后者有特殊位点作为聚合的起始部位,前者没有这种特殊位点。形成纺锤体时的位点统称为“微管组织中心”(MTOC)。中心体和着丝粒都是MTOC,它们在离体情况下都能表现出使微管蛋白聚合成微管的能力

组成纺锤体的常见结构

组成纺锤体的丝状结构称为纺锤丝,有四种,即连续丝、染色体丝(又称牵引丝)、中间丝和星体丝(也称星射线)。连续丝是由一极与另一极相连的纺锤丝,染色体丝又称牵引丝,是从着丝点与一个极相连的纺锤丝。中间丝不与两极相连,也不与着丝点相连,是在后期于两组染色体之间出现的纺锤丝。星体丝也称星射线,由两极的中心体

PNAS:MRN复合物在染色体分离中的新功能

  在绝大多数生物体中,DNA是主要的遗传物质。DNA在外界环境或生物体内部因素的影响下会产生损伤,为了维持基因组的稳定性,真核细胞进化出多种DNA损伤应答机制(DNA damage response,DDR)以应对不同类型的DNA损伤。MRN复合体在DNA损伤应答途径中有重要作用,可以作为感受因子

纺锤体的两种形式

纺锤体有两种:动物细胞的纺锤体两端有星状体,每个星状体的中间有中心体,称为有星纺锤体;高等植物细胞的纺锤体两端没有星状体,呈桶状,称为无星纺锤体。

中国科学家发表核孔复合体结构研究的综述文章

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500266.shtm核孔复合体(Nuclear Pore Complex,简称NPC)是核质运输的门户,由于其复杂的构成和重要的生物学功能,NPC的结构解析一直被认为是结构生物学的“圣杯”。2023年5月

遗传发育所在植物减数分裂纺锤体组装研究中获进展

  减数分裂过程中,纺锤体的正确组装对于同源染色体的准确分离极其重要。但是,不同物种间纺锤体组装的机制并不保守。在哺乳动物、线虫和果蝇中,对纺锤体的组装机制研究较为深入。然而对于植物性母细胞减数分裂过程中纺锤体组装的机制研究还十分缺乏。  中国科学院遗传与发育生物学研究所研究员程祝宽团队通过图位克隆

Nat-Immunol:核孔复合体对于T细胞的生存和功能非常关键

  细胞核膜中的细胞核孔复合体(nuclear pore complexes)不仅能够控制分子进出细胞核,还在T细胞的生存中扮演着关键的角色,近日一项刊登在国际杂志Nature Immunology上的研究报告中,来自Sanford Burnham Prebys医学发现研究所的科学家们通过研究阐明了

细胞纺锤体中心体连丝的概念

中文名称中心体连丝英文名称centrodesmose定  义有丝分裂时两个分开的中心体间最初出现的连接中心体的细丝,是纺锤体形成的起始结构。应用学科细胞生物学(一级学科),细胞周期与细胞分裂(二级学科)

关于纺锤体的功能分解的介绍

  在细胞分裂中,其主要作用有两个部分。其一为排列与分裂染色体。纺锤体的完整性决定了染色体分裂的正确性。纺锤体的正常生成是染色体排列的必要条件。纺锤体生成完毕后一般会有5-20分钟的延迟,以供细胞调整着丝点上微管束的极性,以及决定是否所有的着丝点都附着正确。此后细胞进入分裂后期,染色体分裂为两组数目

NUP210基因的结构特点和主要作用

核孔复合体是一个巨大的结构,它横跨核膜,形成一个通道,调节大分子在细胞核和细胞质之间的流动。核孔蛋白是真核细胞核孔复合体的主要成分。该基因编码的蛋白质是一种跨膜糖蛋白,是核孔复合体的主要组成部分。与该基因相关的多个假基因位于3号染色体上。

GeneDev:靶向核孔复合体可以找到治疗癌症的新方法

  如果将细胞核比喻成DNA的“银行”的话,核孔就是它周围的安全门。然而,安全门并不一定是越多越好:研究发现一些癌细胞中核孔的数量比正常细胞更多。  Salk研究所的研究人员于2018年9月18日在《Genes&Development》杂志上报道的一篇文章中,他们开发出了一种调控核孔数量的方法,这一

KPNB1基因的结构特点及主要作用

核质转运是一个信号和能量依赖的过程,通过核包膜内的核孔复合体进行。含有核定位信号(nls)的蛋白质的输入需要nls输入受体,一种输入素α和β亚单位的异二聚体,也称为核外激素。importinα在细胞质中结合含有nls的货物,importinβ在核孔复合体的细胞质侧停靠复合体。在三磷酸核苷和小gtp结

NUP210基因编码功能及结构描述

核孔复合体是一个巨大的结构,它横跨核膜,形成一个通道,调节大分子在细胞核和细胞质之间的流动。核孔蛋白是真核细胞核孔复合体的主要成分。该基因编码的蛋白质是一种跨膜糖蛋白,是核孔复合体的主要组成部分。与该基因相关的多个假基因位于3号染色体上。The nuclear pore complex is a m