Cell发布再生医学重要发现

在以往的科学研究中来自德克萨斯大学西南医学中心的研究人员发现,新生动物的心脏具有完全的自愈能力,而成体心脏则丧失了这种能力。现在,同一研究小组揭示了在成年期心脏丧失其惊人再生能力的原因,答案很简单——氧气。 是的,就是氧气。众所周知,全身循环富含氧的血液是心脏的一个重要功能。但同时氧也是一种高度活化的非金属元素和氧化剂,可以非常容易地与其他的化合物形成有毒物质。现在研究人员发现是后一种特性造成了成体心脏丧失再生能力。 这一突破性的研究发现发表在4月24日的《细胞》(Cell)杂志上,证实富含氧气的后天环境导致了心肌细胞发生细胞周期阻滞。 研究的资深作者、德克萨斯大学西南医学中心内科助理教授Hesham Sadek博士说:“了解在新生儿中关闭心脏再生能力的这一关键机制,告诉了我们有可能如何找到一些方法重新唤醒成体哺乳动物心脏的这种能力。” 由于出生后立刻接触富含氧气的空气,心脏细胞建立起线粒体这一细......阅读全文

心肌细胞可以再生吗

 传统的观点是心肌细胞不可以再生的,但是,随着医学研究的进展,有研究发现在某些病理情况下,心肌细胞是可以再生的,更新的研究明确了心肌细胞在一定条件下是可以再生。不过,临床想通过心肌细胞再生治疗疾病还任重道远。意见建议:建议到医院具体咨询。

成年心肌细胞能“再生”获证

  成年心肌细胞是不能再生的细胞,这一被写入医学教科书的认知有望被彻底颠覆。第三军医大学大坪医院心血管内科主任曾春雨的科研团队,用最新的实验结果直观地显示了成年心肌细胞不但具备再生能力,而且通过调控后其子代细胞还具备收缩功能。该团队的心肌再生课题组王伟副教授等人历时6年攻关,于6月23日在国际心血管

Circulation:成年心肌细胞能再生么?

  成年心肌细胞是不能再生的细胞,这一被写入医学教科书的认知有望被彻底颠覆。第三军医大学大坪医院心血管内科主任曾春雨的科研团队,用最新的实验结果直观地显示了成年心肌细胞不但具备再生能力,而且通过调控后其子代细胞还具备收缩功能。该团队的心肌再生课题组王伟副教授等人历时6年攻关,于6月23日在国际心血管

eLife:心肌细胞为何不能再生?

  人类和其他所有哺乳动物在出生后不久,大部分心肌细胞复制能力就消失。这个过程是如何发生以及是否能够恢复这种能力甚至再生心肌细胞,这些问题的解答都仍然未知。最近发表在eLife上的一篇研究中,德国的一群科学家们找到了这些问题的一个可能的解释。  中心体几乎存在于每一个细胞中。近年来许多实验证实,如果

心脏受损后心肌细胞能再生吗

传统通常认为心肌细胞属于终末分化细胞,不可以再生,且心肌梗死的病人只可以控制梗死范围,梗死灶通常通过纤维修复形成瘢痕组织,但切尔诺贝利核泄露事件使当时受波及范围人群的心肌上被标上了C14,后来进行的科学实验中,很多年死去的这些人心脏有部分的心肌细胞上的C14消失了,具体机制不明,所以有人认为心肌细胞

抑制心肌细胞坏死的机制被发现

  新华网东京9月28日电(记者蓝建中)日本一个研究小组27日发表公报称,他们发现实验鼠罹患心肌梗塞时,激活实验鼠心肌细胞表面的一种蛋白质能够抑制心肌细胞的坏死。   这种蛋白质是日本自然科学研究机构的一个科研小组发现的,被称为“CFTR离子通道”。这种蛋白质被激活时,细胞内的氯离子被释放出来,避

利用DeaLT技术揭示成人心肌细胞再生的来源(一)

4月26日,国际学术期刊《Circulation》在线发表了中国科学院生物化学与细胞生物学研究所周斌研究组的研究成果“Genetic Lineage Tracing of Non-myocyte Population by Dual Recombinases”。该研究工作利用新建立的双同源重组技术(

利用DeaLT技术揭示成人心肌细胞再生的来源(四)

策略4 Tnnt2-Dre;Actb-Cre;NR1 通过NR1系统研究非肌细胞向肌细胞的转化虽然利用广泛型启动子驱动的可诱导Cre或Dre可以有效标记大多数非肌细胞,但实际上标记效率并未达到100%。少数未标记的非肌细胞在损伤后在成体心脏中产生新的肌细胞也仍旧是有可能的,虽然可能性并不大,因为在谱

利用DeaLT技术揭示成人心肌细胞再生的来源(二)

Tnnt2-Dre; R26-iCre; IR1小鼠在E8.0天给予Dox诱导标记非肌细胞,发现在E8.5天时在其他组织中被标记上ZsGreen绿色荧光,心肌为红色荧光标记(图1E)。接下来收集E13.5天的心脏组织,发现dTomato、ZsGreen和TNNI3(肌细胞marker)的免疫染色

利用DeaLT技术揭示成人心肌细胞再生的来源(三)

相反,在阳性对照实验中,TA肌损伤模型中他莫昔芬诱导后可以很容易地检测到tdTomato+ZsGreen-肌细胞(箭头,图3M),而假手术组没有。图3.综合上述结果,第2种策略使用Tnnt2-Cre;R26-DreER;IR3也显示出与策略1一致的结果:非心肌细胞在胚胎心脏和成体骨骼肌中转化为肌细胞

《Cell》发布再生医学重要发现

  来自英国伦敦大学国王学院的研究人员,第一次阐明了一群存在于心脏中的干细胞的自然再生能力。新研究证实,这些细胞负责修复和再生了心脏病发作损伤的心肌组织。   发表在8月15日《细胞》(Cell)杂志上的这项新研究,表明如果除去这些干细胞,心脏将无法在损伤后得到修复。如果能够用心脏修复来替代这些心

Nature发布再生医学重要发现

  由Jackson实验室的Frank McKeon博士和Wa Xian博士领导的一个研究小组,报告称发现了某类肺干细胞在疾病损伤后的肺脏再生中发挥重要作用。  这项发表在11月12日《自然》(Nature)杂志上的研究工作,阐明了一个肺脏再生新兴概念的内部运作机制,并指出了利用这些肺干细胞的一些潜

Nature发布再生医学重要发现

   由Jackson实验室的Frank McKeon博士和Wa Xian博士领导的一个研究小组,报告称发现了某类肺干细胞在疾病损伤后的肺脏再生中发挥重要作用。  这项发表在11月12日《自然》(Nature)杂志上的研究工作,阐明了一个肺脏再生新兴概念的内部运作机制,并指出了利用这些肺干细胞的一些

Cell发布再生医学重要发现

   根据瑞典卡罗琳斯卡学院(Karolinska Institutet)一项新研究的结果,人的一生都可以形成新的心肌细胞,但这主要发生在生命的最初十年。而其他的细胞类型则以更快地速度被更替。这项发表在《细胞》(Cell)杂志上的研究证实了,人的一生都在再生心肌,由此支持了有可能刺激失去的心脏组织重

Cell发布再生医学重要发现

  根据瑞典卡罗琳斯卡学院(Karolinska Institutet)一项新研究的结果,人的一生都可以形成新的心肌细胞,但这主要发生在生命的最初十年。而其他的细胞类型则以更快地速度被更替。这项发表在《细胞》(Cell)杂志上的研究证实了,人的一生都在再生心肌,由此支持了有可能刺激失去的心脏组织重建

Nature揭示再生科学重要发现

  在发表于6月19日《自然》(Nature)杂志上的一项新研究中,由加州大学圣地亚哥医学院的研究人员领导的一个科学家小组,对斑马鱼心室损伤后心脏再生过程中发生的动态细胞事件进行了视频监控。他们的研究发现证实了,心脏中的多种细胞系比以前认为的更具可塑性,能够转变为新的细胞类型。   加州大学圣地亚

Science发表再生医学重要发现

  生物通报道:斑马鱼拥有惊人的再生能力,它们的脊髓在切断之后可以完全愈合。杜克大学的研究人员十一月四日在Science发表文章,揭示了斑马鱼修复脊髓的一个关键蛋白。这一发现为人类组织修复带来了新的启示。  斑马鱼再生脊髓的时候会形成一种“桥”。支持细胞伸出长长的突起,跨越数十倍于自身长度的距离,与

Science重要发现:炎症促进再生

  发表在最新一期(11月8日)《科学》(Science)杂志上的一篇报告揭示斑马鱼具有非凡的大脑修复能力秘密在于炎症。斑马鱼大脑的神经干细胞表达了一种炎症信号分子的受体,促使细胞增殖并发育成新神经。   约翰霍普金斯大学神经病学和神经科学教授明国丽(Guo-Li Ming,未参与该研究)说:

Cell发布再生医学重要发现

  在以往的科学研究中来自德克萨斯大学西南医学中心的研究人员发现,新生动物的心脏具有完全的自愈能力,而成体心脏则丧失了这种能力。现在,同一研究小组揭示了在成年期心脏丧失其惊人再生能力的原因,答案很简单——氧气。   是的,就是氧气。众所周知,全身循环富含氧的血液是心脏的一个重要功能。但同时氧也是一

Science发布再生医学重要发现

  内皮细胞并不仅仅只会对外源性刺激做出被动响应,它们自身还以一种非常积极的方式控制了器官功能。现在来自德国癌症研究中心和海德堡大学的科学家们发现,在遭受损伤或部分手术切除之后内皮细胞可通过一种复杂的生长调控机制来控制肝脏再生。   密集的动脉、毛细血管和静脉网络使得身体内的每个细胞距离最近的血管

Nature:心肌细胞为何不能再生?科学家找到关键通路

  心脏肌肉是身体中再生能力最差的组织之一,由于成年哺乳动物大部分心肌细胞已经失去了再生能力,因此心脏疾病对心肌细胞的损伤往往无法修复。在美国,心脏病是主要的疾病死亡原因。如何改善心脏的自我修复能力一直是科学家们关注的难题。近日,Baylor医学院和德克萨斯心脏研究所的研究人员探索了与心脏细胞功能有

日本科学家发现增加心肌细胞方法

  日本庆应义塾大学教授福田惠一和助教下地显一郎近日发现,一种名为“粒细胞集落刺激因子”的物质可以帮助心肌细胞大量增殖。   老鼠胎儿在发育初期,心肌细胞会迅速增殖。福田对在母鼠子宫中发育了10天的老鼠胎儿进行了专门研究。他发现,这一时期老鼠胎儿体内的“粒细胞集落刺激因子”数量增加,于是猜测这种因

再生心肌细胞中Meis1-的辅助因子的使用(三)

■ DiKO 小鼠中的心脏再生 那么成年小鼠心脏中条件性诱导的 Meis1 和 Hoxb13 缺失是否能促进心肌细胞重新进入分裂周期呢?首先,观察发现 DiKO 小鼠的心脏体重比变大,注射 Tamoxifen 后,心肌细胞横截面积减少了约 30%,并且观察心肌细胞的数量与有丝分裂发现,Meis1-H

再生心肌细胞中Meis1-的辅助因子的使用(二)

■ 主要实验方法 免疫荧光染色;免疫印迹 (WB) ;免疫共沉淀 (Co-IP) ; 染色质免疫共沉淀结合下 一代测 序 (ChIP-seq) ;磁共振成像;经胸超声心动图检测;TUNEL 分析。 实验结果 ■ Hoxb13 与 Meis1 的关联 此前的研究中,Sadek 的研究团队已经发现 Ho

再生心肌细胞中Meis1-的辅助因子的使用(一)

研究背景1、心力衰竭影响全球 2600 多万人,心力衰竭的主要潜在原因是成年人心肌在受伤后无法自行修复。2、哺乳动物的心脏在受伤后早期能够通过心肌细胞增殖实现再生。 ■ 重要“人物” 介绍 Meis1:由 Meis1 基因表达。Meis1 是 TALE 家族中一种非 Hox 同源异型盒基因。Meis

Cell:科学家鉴别出关键基因-促进心肌细胞再生心脏组织

  近日,一项刊登在国际杂志Cell上的研究报告中,来自格莱斯顿研究所(Gladstone Institutes)的科学家们通过研究鉴别出了能促进成体细胞分裂和增殖的关键基因;有些有机体具有显著再生组织的能力,如果鱼类和火蜥蜴遭受心脏损伤的话,其机体的细胞就会不断分裂,并且成功修复损伤的器官,试想一

Nature发表再生医学重大发现

  来自英国伦敦大学国王学院的科学家们,第一次确定了皮肤中称之为成纤维细胞(fibroblasts)的两种细胞类型的独特特性:其中一种细胞类型是毛发生长的必要条件,另一种负责修复皮肤创面。这项研究有可能为开发出新疗法修复损伤皮肤,减少衰老对于皮肤功能的影响铺平了道路。这项研究发表在12月11日的《自

研究人员发现动物“再生记忆”可被改写

  台湾研究人员陈振辉及其研究团队日前公布的最新研究成果发现,经由调控特定基因的活性,可以改写动物的“再生记忆”。  该项研究发现,当“再生记忆”受到影响后,斑马鱼再生的新尾鳍可以出现不同的大小和形状。这是科学家首次证实“再生记忆”可以被改写。此研究已于11月27日刊登于国际期刊《当代生物学》。  

Nature子刊发现神经细胞再生途经

  卡尔加里大学Hotchkiss脑研究所(HBI)的一项新研究,揭示了促进受损神经细胞生长的一个新机制,其可以作为损伤后恢复神经细胞连接的一条途经。Doug Zochodne博士和他的研究小组发现,一个关键的分子直接调控了受损神经系统中神经细胞的生长这一研究发表在《自然通讯》(Nature

科学家发现诱导组织再生关键途径

  近日,美国lankenau医学研究所的研究人员进行了一项研究,他们发现低氧诱导因子HIF-1a信号途径可用于实现小鼠组织的自发性再生,不需要额外的干细胞作用。这项研究成果发表在国际学术期刊science translational medicine。  研究人员指出,很多年以前他们偶然发现一株罕