Antpedia LOGO WIKI资讯

NASA测试超黑材料可吸收99.5%可见光

NASA测试超黑材料 可吸收99.5%可见光 这是全世界颜色最黑的材料——如果把它折叠起来根本不可能看到——现在NASA正在对材料进行太空测试。 这材料可以吸收99.5%的可见光和99.8%的红外线照射。工程师们希望将这种最新发明出来的超黑材料做成涂层,应用在太空望远镜原件上。之所以工程师们想在太空望远镜上加上这层超黑材料,是为了吸收不需要的光线,防止杂光进入望远镜敏感的光探测器。 NASA的工程师没有轻易将黑色涂层随便涂装到昂贵的望远镜上,在此之前,工程师们希望知道这种材料是否能经受住极强辐射、氧自由基和太空中其它的严酷条件。为了验证,NASA向国际空间站发送了这种涂层材料,一起发射上天的还有实验用的机器人系统,这是一种用于在轨道上修理卫星的机器人。所有器材都已经于8月12日抵达国际空间站。为了进行测试,涂层将在空间站的非增压环境下待上一年时间,随后,宇航员会把它重新送往地球,进行进一步分析。 这种黑色涂层非常类似英国......阅读全文

超黑变色材料可将光线变成任何颜色

         本报讯 它是地球上最黑的物质之一,却能将光转变成你想要的任何颜色。这种变色材料易于制造,或许有一天可增强太阳能发电能力。  黑度的全球纪录由一种碳纳米管制成的材料持有。当被分层堆积到1毫米厚时,这种材料能吸收99.8%的光线。  不过,一种拥有像小锤子一样的形状并且由黄金制成的纳米

超黑变色材料可将光线变成任何颜色

  它是地球上最黑的物质之一,却能将光转变成你想要的任何颜色。这种变色材料易于制造,或许有一天可增强太阳能发电能力。  黑度的全球纪录由一种碳纳米管制成的材料持有。当被分层堆积到1毫米厚时,这种材料能吸收99.8%的光线。  不过,一种拥有像小锤子一样的形状并且由黄金制成的纳米材料,几乎达到了同样黑

NASA测试超黑材料-可吸收99.5%可见光

NASA测试超黑材料 可吸收99.5%可见光  这是全世界颜色最黑的材料——如果把它折叠起来根本不可能看到——现在NASA正在对材料进行太空测试。  这材料可以吸收99.5%的可见光和99.8%的红外线照射。工程师们希望将这种最新发明出来的超黑材料做成涂层,应用在太空望远镜原件上。之所以工程师们想在

美科学家研制出一种新超黑材料

  据英国《每日邮报》11月11日(北京时间)报道,美国科学家研制出一种新的超黑材料,能吸收几乎所有照射在其上的光,吸收率超过99%,在从紫外线到远红外线多个波段都获得了几近完美的吸光效果。科学家们表示,这种材料可广泛应用于从光抑制到为太空设备降温和“瘦身”等领域,有望开启太空技术研究

宽波段柔性吸光材料问世

  美国加利福尼亚大学圣地亚哥分校的研究人员在近期的美国《国家科学院院刊》上发表论文称,他们利用纳米技术,开发出一种轻薄透明的柔性吸光材料,可将太阳能电池的效率提高3倍以上,并具有隐身性能。  该材料可称是近乎完美的宽波段吸收材料,可吸收87%以上的近红外光(1200至2200纳米波长),对其中15

科学家发明“最黑”材料-黑到无法看见

科学家发明“最黑”材料  如果用它来制作一件香奈儿的小黑裙,穿衣者的头和四肢可能看起来像灵魂般地漂浮在裙子形状黑洞的四周。  参考消息网7月14日报道 英媒称,英国一家公司生产出了“奇异的、与众不同的”物质,非常之黑,以至于它能吸收几乎所有的可见光,创造了新的世界纪录。这种“超黑”涂层由碳毫微管组成

“治污黑科技”:新材料助力黑臭水体污染防治

   6月5日电,科学技术的发展,为解决黑臭水体污染治理的世界性难题提供了新选择。我国科学家研发出一种新材料,将其平铺在黑臭水体表面,太阳光照射两周内,可明显改善水质。今年初,相关成果获得国家自然科学奖二等奖,拥有发明ZL50多项,已在上海、安徽、江苏等地成功示范,正成为整治黑臭水体和污染防治的利器

超细碳纳米管可高效过滤水中盐分

  美国科学家研制出一种由超细碳纳米管组成的过滤系统,可以高效过滤水中的盐分等杂质,有望用于降低海水淡化成本。  碳纳米管是由碳原子层组成的长而中空的管状物,直径通常为几纳米至几十纳米。它具有很多特殊性能,比如能使水分子通过,同时阻隔盐离子。  美国劳伦斯利弗莫尔国家实验室发表公报说,新研究所用碳纳

碳纳米管膜形成超流体的过程介绍

于量子液体低于某临界转变温度会形成超流态。比如氦最丰富的同位素,氦-4,在低于 2.17 K(−270.98°C) 时便会变成超流体。氦-4形成超流态的相变称为Lambda相变(Lambda transition),因它的比热容对温度曲线形状如同希腊字母“λ”一样。凝聚态物理学中一些相近的相变亦因而

蝴蝶翅膀+碳纳米管=新型生物复合材料

  最近,日本科学家通过大闪蝶翅膀和碳纳米管研发出了一种新型纳米生物复合材料。   通过这种具有神奇天然属性的南美洲大闪蝶翅膀,科学家们研发出了一种纳米生物复合材料,并有望在未来应用于可穿戴电子设备、高灵敏度光传感器以及可循环使用的电池产品中。科学家将这一科技成果发表在《ACS纳米技术》期刊中。

新型碳纳米管基散热材料研发成功

  中科院苏州纳米所研究员李清文课题组将高导电、高导热的铜纳米线引入碳纳米管纸,制备出具有高热导率和电导率的新型碳纳米管基散热材料。相关成果发表于《碳》杂志。   据了解,碳纳米管具有极高的轴向热导率,因而在大功率电子器件散热材料中被寄予厚望。然而,其小尺寸特性,还有碳纳米管之间及其与复合材料基体

太赫兹信息超材料与超表面-(一)

刘峻峰, 刘硕, 傅晓建, 崔铁军    摘要:该文对信息超材料,包括数字超材料、编码超材料、以及可编程超材料的研究进展及其在太赫兹领域的应用进行了综述,从原理分析、数值仿真、样品制备、实际应用等多个角度介绍了信息超材料对电磁波全面而灵活的调控能力,着重探讨了编码超材料在太赫兹领域的发展以及应用,最

太赫兹信息超材料与超表面-(二)

4 太赫兹数字编码超材料随着编码超材料的发展,在太赫兹领域,各向异性编码超表面[12]、张量编码超表面[13]、频率编码超表面[14]以及编码超表面的数字卷积运算[15]等理论被提出,并由此得到了低雷达散射截面、波束空间搬移、异常折射、贝塞尔波束等现象。下面将以基于编码超材料的低雷达散射截面(RCS

美用碳纳米管制成超灵敏气体探测器

  据《每日科学》网站报道,在受到压力时,细胞会吐出一股含有微量氮氧化物和其他有毒物质的气流。最近,美国国家标准与技术研究院(NIST)的研究人员成功制作了一种超灵敏气体探测器,该探测器甚至灵敏到未来也许能探测到一个单细胞的微量排放,这为确定药物或纳米粒子是否会损害细胞或研究细胞间如何相互通信提供了

超顺排碳纳米管阵列产业化项目落户北京

  稀有金属铟逐渐减少,将使以它为主要原料的触摸屏产业面临危机?6月18日正式签约入驻北京纳米科技产业园的清华—富士康纳米科技研究中心超顺排碳纳米管阵列产业化项目,或将解决这一问题。   这是北京纳米科技产业园继纳米绿色印刷项目之后,迎来的又一个纳米重大科技成果。该项目致力于打造碳纳米管超顺排阵列

“最黑”材料制成高精度激光功率检测器

   据美国科学促进会网站8月18日报道,美国国家标准技术研究院利用世界最黑材料——森林状多壁碳纳米管作涂层,研制出一种激光功率检测器,可用于光通讯、激光制造、太阳能转换以及工业和卫星运载传感器等先进技术领域的高精度激光功率测量。研究论文发表在最新的《纳米快报》上。   这种新型检

德国BRITA碧然德承认使用“黑”材料

   随着消费升级,众多进口品牌越来越受到消费群体青睐,德国、日本等产地的产品因质量过硬更是备受消费者追捧。然而,近日国家质检总局公布的进口工业产品不合格信息显示,一批次德国进口壶被检出质量问题。  10月30日,国家质检总局官网公布了《2017年9月进口工业产品不合格信息》。其中,一批从德国进口的

锂电池材料乙炔黑的应用介绍

  用作抗静电剂。加入丙烯酸酯/醋酸乙烯共聚的乳液中,可制成导静电乳液压敏胶黏剂,加入量为1.2%时导电性达到7.2×103Q,可用于粘贴导静电PVC地板。也用作导电性填料,配制导电性要求不高的导电胶黏剂。  常用于镍氢电池和锂电池作吸电液剂。

碳纳米管杂化材料工程中心落户泾河新城

  7月26日,西咸新区泾河新城石墨烯—碳纳米管杂化材料工程中心项目签约仪式在西安香格里拉大酒店举行,该项目由西咸新区泾河新城管委会与陕西国能锂业有限公司联合清华大学组建,将有力促进中国锂产业的深度转化和升级,对泾河新城把中国锂谷建成国际领先、国内一流的锂产业示范基地具有重要作用和意义。量产后将形成

Advanced--Materials-综述:碳纳米管基热电材料及器件

  图1 纳米结构材料的进步  热能是一种丰富的低通量能源,可用于便携式/可穿戴电子设备和远程离网位置的关键组件。因此,研究人员正在探索许多不同的无机和有机材料在热电能量收集装置中的应用潜力。碳基热电材料由于其无毒、源材料丰富,对高产量溶液相制造路线的顺应性以及由其低质量所实现的高比能(即 W g-

关于锂电池的材料碳纳米管的介绍

  碳纳米管是一种石墨化结构的碳材料,自身具有优良的导电性能,同时由于其脱嵌锂时深度小、行程短,作为负极材料在大倍率充放电时极化作用较小,可提高电池的大倍率充放电性能。  缺点:碳纳米管直接作为锂电池负极材料时,会存在不可逆容量高、电压滞后及放电平台不明显等问题。如Ng等采用简单的过滤制备了单壁碳纳

声学超材料研究获进展

近期,中科院力学所微重力重点实验室王育人团队在如何利用单相材料通过简单结构实现双负特性方面取得重要进展。该系列成果已发表在《科学报告》《应用声学》与《冲击与振动》等期刊上。

超疏水仿生材料表面

由于超疏水材料,特别是表面改性后仿生材料(仿荷叶超疏水或仿壁虎钢毛结构超亲水材料)的接触角的表征因结构的特殊性,测试起来特别困难。现有的理论通常基于Wenzel和Cassie模型。这些理论为我们的分析奠定了一定的基础,而实际应用于本征接触角的表征计算时难度相当大。有一些科研人员力图通过分析表面粗糙度

声学超材料研究获进展

   近期,中科院力学所微重力重点实验室王育人团队在如何利用单相材料通过简单结构实现双负特性方面取得重要进展。该系列成果已发表在《科学报告》《应用声学》与《冲击与振动》等期刊上。图片来源网络由于奇异的物理特性,声学超材料在波定向控制与超分辨成像等领域有着广泛的应用前景。目前双负声学超材料结构构型通常

超净工作台材料

   超净工作台笼盒由耐高温的透明塑料材料制成,一套笼盒由上盖、食槽、水槽、底盒、锁紧扣、进出风口组件、硅橡胶密封垫圈等组成有的上盖上    还有一个称之为生命之窗的空气过滤网。独立通风笼盒是IVC设备的关键所在,它要具有一定的密闭性,能防止盒外空气的进入,以减少可能的感染来源,又要能让洁净空气流畅

新一代材料碳纳米管崭露头角

  “碳纳米管是我所能见到的最好的导电材料。”   美国赖斯大学化学和材料科学教授安德鲁·巴伦希望用这种材料制成一些非常大东西,例如几千英里长的高导电电力传输线,用于建设更有效的能源网格。   而这也是赖斯大学已故教授理查德·斯莫利一个未完成的构想,他因为发现了碳纳米而荣膺诺贝尔化学奖。   

碳纳米管将取代硅成为处理器芯片材料

  至少过去的五十年时间我们全部的计算机、游戏机、智能手机、汽车、媒体播放器甚至是闹钟的处理器核心都是由硅组成的。但是科学家和研究人员现在认为硅晶体处理器即将达到它们的极限。IBM公司的科学家们似乎已经找到了一种真实的方式抛开硅晶体而转向碳纳米管。      碳纳米管未来将取代硅成为处理

碳纳米管/石墨烯:纳米材料技术的领头羊

  纳米技术是通过对纳米尺度物质的操控来实现材料、器件和系统的创造和利用,例如,在原子、分子和超分子水平上的操控纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。纳米碳材料是指尺度至少有一维小于100纳米的碳材料。纳米碳材料主要包括四种类型

锂离子电池材料乙炔黑的相关介绍

  乙炔黑是由碳化钙法或石脑油(粗汽油)热解时副产气分解精制得到的纯度99%以上的乙炔,经连续热解后得到的炭黑。将反应炉内部升温至乙炔分解起始温度800℃以上后,导入乙炔开始进行热分解。因系放热反应,反应可自动进行。为了获得稳定的质量,反应温度应保持在1800℃左右。炉内温度可通过反应炉外筒水冷夹套

锂电池材料乙炔黑的理化性质

  外观为黑色极细粉末,相对密度1.95(氮置换法)。表观密度0.2~0.3g/cm³。平均粒径30~45nm。比表面积55~70m²/g。吸碘值60~80gI2/kg。乙炔炭黑纯度很高,含碳量大于99.5%,氢含量小于0.1%,氧含量0.07%~0.26%。pH值5~7。电阻率极低,具有优良的导电