Antpedia LOGO WIKI资讯

Nature:想长寿你需要胶原蛋白

糖尿病中心的科学家们在一毫米长的线虫中进行了衰老研究。他们发现,延长寿命的不同方法(比如热量限制和雷帕霉素治疗)都会影响胶原和其他细胞外基质蛋白(ECM)的表达,细胞外基质是为组织、器官和骨骼提供支持的重要框架。相关论文发表在十二月十五日的Nature杂志上。 这项研究为人们提供了重要的新线索,有助于开发更好的药物延缓衰老,治疗与衰老有关的各种慢性病。 “为了研究目前几种主要的长寿策略,我们对线虫进行了遗传学、营养学和药物干涉。研究显示,这些干涉提高了胶原和其他ECM基因的表达,促进了ECM的重塑,”文章的通讯作者之一T. Keith Blackwell说。“事实上,过表达一些这样的基因,的确能使线虫活得更长一些。” 这项研究指出,胶原和其他ECM成分的生产,对于线虫的寿命非常关键。这意味着促进ECM重塑将能延缓人体衰老,Dr. Blackwell说。线虫是研究衰老的理想模型,因为它寿命短而且很容易进行基因操作。 胶......阅读全文

2014国家自然科学基金 衰老研究项目知多少

  来自国家自然科学基金委员会的消息,国家自然科学基金委员会公布了2014年国家自然科学基金申请项目评审结果,根据《国家自然科学基金条例》、国家自然科学基金相关类型项目管理办法的规定和专家评审意见,决定资助面上项目、重点项目、部分重大项目、创新研究群体项目、优秀青年科学基金项目、青年科学基金项目、地

【盘点】衰老与疾病的关联性研究进展

  人为什么会变老?对于人类来说,如何才能长生不老真的是一个令人着迷的问题。但是至今为止都没有一个让人满意的答案。衰老一直是生命过程中的核心环节,也是影响整个人类社会健康发展的重要问题。目前世界各国均面临着严重的人口老龄化,数据显示到2050年约三分之一的中国人口年龄将超过60岁。因此,深入了解衰老

Nature:梳理衰老研究指出人类最终有望健康衰老

  几十年来,对衰老和限制寿命的过程的了解一直困扰着生物学家。三十年前,通过鉴定延长多细胞模式生物寿命的基因变异,衰老生物学获得了前所未有的科学可信度。  在本文,我们总结了标志着这一科学成就的里程碑事件,讨论了不同的衰老途径和过程,并提出衰老研究正在进入一个具有独特的医学、商业和社会意义的新时代。

董梦秋:破译衰老密码

   办公桌上、窗台上,摆满了绿植,还有一个精致的小鱼缸,四平方米左右的办公室干净温馨。在见识前几位PI简陋的办公室后,这里的风景让人眼前一亮。“哈哈,肯定是黄牛说的,他老说我这是闺房。”董梦秋的一串爽朗笑声瞬间让我轻松许多。   受“女生不太擅长理科”这种根深蒂固观点的影响,我向来对很牛的女科研人

重磅级文章解读2019年衰老领域研究新进展!

  时至岁末,转眼间2019年已经接近尾声,迎接我们的将是崭新的2020年,在即将过去的2019年里,科学家们在机体衰老研究领域取得了很多显著的成果,本文中,小编就对本年度科学家们在该研究领域取得的重磅级研究成果进行整理,分享给大家!图片来源:Fouquerel et al. (2019). Mol

Nature:首次发现RNA剪接与衰老之间存在因果关系

  生物通报道:衰老是各种破坏性慢性疾病的一个重要危险因素,但是,随着时间推移生物学因素如何影响“细胞何时以及多快的衰老”,在很大程度上仍然是未知的。现在,由哈佛大学T.H. Chan公共卫生学院带领的一个研究小组,将细胞机器——其在一个称为“RNA剪接”的过程中切割和重新连接RNA分子——的一个核

科学家们合作研究发现新的抗衰老靶标基因

  “人为什么会衰老,人的寿命到底有没有极限?”“我们能不能实现长生不老、返老还童?”两年前,中国科学院脑科学与智能技术卓越创新中心研究员蔡时青在一个科普论坛上抛出的这些问题,引起了众多同行的关注和提问,他的观点也被一些人概括为“人类已经有望实现‘长生’,而我们的目标却是‘不老’”。  如今,由蔡时

国内优秀科学家“衰老”课题重磅研究一览

  众所周知,衰老关乎人类的健康和寿命。随着生物学知识的积累以及现代生物技术的发展,关于衰老的研究得到了更多的重视,也达到了前所未有的深度。近年来,我国科学家在干细胞抗衰老、染色质结构与衰老、氧化还原与衰老、影响衰老进程的信号通路和分子机制等方面取得了丰富的成果。下面盘点一下近年来人类健康衰老领域的

Nature:想长寿你需要胶原蛋白

  Joslin糖尿病中心的科学家们在一毫米长的线虫中进行了衰老研究。他们发现,延长寿命的不同方法(比如热量限制和雷帕霉素治疗)都会影响胶原和其他细胞外基质蛋白(ECM)的表达,细胞外基质是为组织、器官和骨骼提供支持的重要框架。相关论文发表在十二月十五日的Nature杂志上。  这项研究为人们提供了

分子细胞卓越中心发现衰老与纤毛之间的相互作用机制

原文地址:http://www.cas.cn/syky/202103/t20210324_4782187.shtml   3月19日,中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员沈义栋研究组的最新研究成果以The decrease of intraflagellar t

Cell Rep:鉴别出能将寿命延长500%的新型信号通路!

近日,一项刊登在国际杂志Cell Reports上的研究报告中,来自中国南京大学等机构的科学家们通过研究发现了一种负责长寿的协同细胞通路,其或能将线虫的寿命延长5倍,线虫是一种用作衰老研究的动物模型。图片来源:MDI Biological Laboratory研究者表示,寿命的增加相当于人类能存活4

基于能量地貌的量化分析揭示线虫衰老的内在机制

  中国科学院长春应用化学研究所电分析化学国家重点实验室研究员、美国石溪大学教授汪劲和电分析化学国家重点实验室助理研究员赵磊,通过量化分析线虫衰老相关的势能地貌,揭示了线虫衰老的内在机制,并指出了逆转衰老过程的可能性和相应的路径。该成果在Journal of the Royal Society In

第六届全国微全分析学术会议隆重召开

中科院大连化学物理研究所 林炳承教授   中科院大连化学物理研究所林炳承教授与大家分享了功能化微流控芯片实验室的构建设想。   林教授在报告中指出,一系列主要的分析化学操作模式已经在微流控芯片上实现,原则上讲,几乎所有的分析化学操作模式均可以在微流控芯片及其周边完成。微流控芯片分析化学实

首次揭秘“个体之间衰老速度不同”的遗传基础!

   2017年11月9日,《自然》(Nature)杂志以长篇研究论文(Article)形式发表了中国科学院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家重点实验室蔡时青研究组题为《胶质细胞-神经元信号的遗传多态性调节衰老速度》的研究工作。  衰老是有机体生理功能随时

董梦秋:化学交联质谱让结构生物学研究如虎添翼

  在蛋白质组学分析方法中,质谱获得的是多肽序列结构的信息;那么用质谱是否可研究大分子蛋白的结构信息?近几年来,董梦秋实验室在中国做出了多项先驱性工作,主要集中在化学交联质谱领域。在用单颗粒冷冻电镜技术研究结构生物学屡创佳绩的当下,很多研究者都把样品一分为二,一份做冷冻电镜,一份做交联质谱。那么交联

突破成果!一种药物可提高卵子质量 或延长女性生育力

  近日,一项突破性成果以“Insulin Signaling Regulates Oocyte Quality Maintenance with Age via Cathepsin B Activity”为题发表在Current Biology杂志上。  领导该研究的分子生物学教授 Coleen

Nature:清除衰老细胞可延长小鼠寿命

  在一项新的研究中,来自美国梅奥诊所的研究人员证实衰老细胞---不再发生细胞分裂且随着年龄增加而不断堆积的细胞---对健康产生负面影响,能够让正常小鼠的寿命缩短最多35%。这些结果还证实清除衰老细胞会延迟肿瘤形成、保持组织和器官功能,以及延长寿命,同时并没有观察到副作用。相关研究结果于2016年2

线虫知识

2002 生理或医学奖 Sydney Brenner John E Sulston H. Robert Horvitz这三位科学家以构造简单的线虫为研究对象,在观察线虫的细胞生长分化过程中,发现多个能够调控器官发育与细胞程序性死亡的基因;并且证明包括人类在内的高等生物体内也有相对应的基因存在。200

Nature:抑制年龄相关的神经活动增加竟可延长寿命

  在一项针对线虫、小鼠和人类的研究中,来自美国哈佛医学院的研究人员发现在整个动物界中,衰老会带来更多的神经活动,而当这种自然增加受到限制时,个体的寿命可能就会变得更长。他们着重介绍了一种保守性的称为REST的转录因子,它可能是调节这种年龄相关的神经活动的关键。相关研究结果发表在2019年10月17

神经生物学领域最新研究进展

  本期为大家带来的是神经生物学领域最近的研究进展,希望读者朋友们能够喜欢。  1. Nature:新研究首次揭示抑制年龄相关的神经活动增加竟可延长寿命  doi:10.1038/s41586-019-1647-8.  在一项针对线虫、小鼠和人类的研究中,来自美国哈佛医学院的研究人员发现在整个动物界

Cell Reports:快速衰老的秘密

  日积月累的DNA损伤导致了衰老,而衰老只是其中一种结果而已。研究表明DNA损伤的多种多样影响已经到达了前所未有的复杂性。由CECAD的科学家Björn Schumacher带领的团队的关于衰老的研究成果发表在《Cell Reports》杂志上。  遗传物质DNA是我们生命的蓝图,就像一本指导手册

Nat Chem Bio:线虫研究揭示长寿的奥秘

  根据Scripps Research的科学家的一项研究,一类酶活性抑制分子通过调节大麻素生物途径,可以将秀丽隐杆线虫的寿命延长45%,  相关工作最近在《Nature Chemical Biology》杂志上发表,该研究还表明,秀丽隐杆线虫中延长寿命的大麻素途径与人类和其他哺乳动物中发现的大麻素

解读为何肠道菌群是开发治疗多种人类疾病疗法的关键!

  近年来,随着科学家们研究的不断深入,曾经在研究中被他们所忽视的肠道菌群(肠道微生物)被再次重视起来,多项研究中研究者发现肠道菌群和很多疾病的发生都有关联,比如风湿病、机体衰老、炎症甚至癌症等;当然了肠道菌群也是研究人员治疗多种人类疾病的关键靶点,科学家们往往会利用机体肠道菌群来治疗诸如肥胖、糖尿

科学家公开致信谷歌创始人: 衰老是可以治愈的疾病

  “长生不老”是人们永恒的梦想,炼丹的古人数不胜数,“青春永驻”也在传奇小说里经常出现,用现代科学的语言来说,就是“抗衰老”。无论从哪个角度来看,抗衰老研究都是十分热门的领域, 最近,分子生物物理学家 Maria Konovalenko 致信 Google 联合创始人 Sergey Brin,

Cell子刊新发现:microRNA加工影响长寿

  Joslin糖尿病中心的科学家在研究衰老和疾病的过程中,发现脂肪组织的microRNA加工对衰老和抵抗力有着重要影响。这一发现有望帮助人们开发增强抵抗力、延长寿命和改善代谢情况的新药物。该研究发表在Cell Metabolism杂志的网络版中。   近年来,人们越来越清晰的认识到脂肪细胞a

Nature新文章探究衰老的原因

  哈佛医学院系统生物学教授Walter Fontana实验室的研究人员,在调查各种遗传和环境因素如何影响秀丽隐杆线虫寿命时发现了一种惊人的统计规律。他们的研究结果表明,衰老并没有单个独立的分子原因,而是涉及一个复杂生物网络中多个元件的一个系统的过程。扰乱这一系统中任何的节点,你都会影响整个事件。这

Nature子刊 | 平均寿命延长30%,关键机制终获破解!

   从古至今,人类对长寿的渴望从未减弱,随着医疗水平的改善和科技的发展,人类的平均寿命在过去几个世纪得到了显著延长,即便如此,科学家们也从未停止对衰老的探索。  最近,知名学术期刊Nature子刊《SCientific Reports》刊登了一篇关于衰老与长寿的深度文章。从对长寿蠕虫的研究中发现了

Cell子刊揭示一大波衰老基因

  从古至今,人类从未停止过对长生不老的追求。现在科学家们正在逐步揭开衰老的秘密,在分子水平上寻找延缓衰老和治疗衰老相关疾病的线索。  Buck衰老研究所和华盛顿大学的科学家们经过十年努力,最终鉴定了238个与衰老有关基因。研究表明,去除这些基因可以延长酿酒酵母的复制寿命。相关论文发表在十月八日的C

Nature聚焦:长生不老离我们有多远

  南Illinois大学医学院的老年病专家Andrzej Bartke发现,抑制了生长激素或胰岛素样生长因子IGF的突变型小鼠只有正常小鼠三分之一大,但它们的寿命更长。他1996年发表的研究显示,雄性突变小鼠的寿命大大延长,而雌性突变小鼠寿命更长,甚至能达到四年。这项研究首次证明单个基因突变可

Cell子刊揭示跨世代的衰老调控

  是什么导致了衰老?一直以来这方面的证据通常都局限于对单个生物体寿命的研究;我们的细胞在我们整个一生中分裂很多很多次,最终导致了我们的器官和身体发生衰老及故障。然而来自北卡罗来纳大学医学院的一项新研究表明,我们的衰老方式有可能取决于经过数代我们从祖先处继承的细胞相互作用。   通过研究线虫的生殖