Antpedia LOGO WIKI资讯

同行评点“人造生命”

“这一实验表明,我们可以用计算机设计基因序列,制造出人工合成的细胞。我们的下一步计划无疑是要提升到一个新的水平,创建出更复杂、有实用价值、能造福社会的生物体。” ——文特尔研究所负责人丹尼尔·吉布森 “将完整的基因组从一个物种交换到另一个物种是很了不起的创举。这代表了合成生物学的一个重要进步。” “尽管这是一个伟大的壮举,但我不会把它叫作人造生物体。人工合成意味着完全从头开始,而不是利用天然的基因组,更重要的是,该实验还是需要一个受体细胞为移植细胞提供细胞质的”。 ——霍华德休斯医学研究所生物工程师詹姆斯·柯林斯 “具有里程碑意义的创新还未产生。他们所做的只是在未明显影响到原来DNA功能的情况下,成功地将DNA从一个物种转移到另一个物种中。” ——美国密苏里州堪萨斯城实用生物伦理学研究中心格伦·麦吉 “如果所提出的目标是为商业目的产生有益的微生物,已有其他方法在应用之中了,……但无论如何,这都是......阅读全文

科学看待生命“被制造”

  小细菌、新系统、大产业  重新设计、制造新的生物系统,使解决能源、材料、健康和环保等问题不再是神话  科学技术的进展推动人类社会向前发展,使人类摆脱落后的生产和生活方式,并创造了巨大的社会财富。但与此同时也产生了一系列问题,如能源危机、环境污染、气候变化和生态失衡等重大灾难,这成为制约人类社会发

第三届合成生物学青年学者论坛在沪举行

  7月1日至2日,由中科院上海植物生理生态研究所等主办的第三届合成生物学青年学者论坛在沪举行,40余位来自世界各地的合成生物学领域知名青年学者围绕合成生物学的最新前沿热点议题,如基因组合成与编辑、元件与底盘设计、线路设计和动态调控、代谢工程、基于基因和细胞的疾病治疗、环境修复、新技术与理论、生物安

MIT创建隔离基因电路的细胞,剑指下一个“阿里巴巴”

  近日,有一则新闻《新的“阿里巴巴”将诞生?孙正义再次重金剑指全新领域-合成生物学”》,报道了日本软银(SoftBank)向一家名不见经转的初创公司Zymergen投资总计1.3亿美元,吸引孙正义投资的技术优势之一是该公司的合成生物学平台。  那究竟合成生物学是什么?“基因电路”作为其中重要一环,

从人类基因组到人造生命:克雷格·文特尔领路生命科学

  自人类基因组计划 (Human Genome Project,HGP) 完成以后,生命科学进入“后基因组时代”,生物信息学、计算生物学、系统生物学以及合成生物学等崭新学科不断出现,并得到快速发展。前不久,首个“具有人造DNA的活细胞”在克雷格·文特尔(J. Craig Venter)的研究所横空

合成生物学:让“像组装机器一样组配生物”成现实

  当国人将目光投向因发现青蒿素而获得诺贝尔科学奖的屠呦呦身上时,一批专家学者进而聚焦在让青蒿素可以大规模制备的幕后英雄——合成生物学身上。2015年12月底以合成生物学发展战略为主题的第552次香山科学会议上,30多位专家研讨如何将“可以像组装机器一样组配生物”的设想变为现实。  所谓合成生物学,

中科院合成生物学研究所揭牌

  日前,中国科学院深圳先进技术研究院合成生物学研究所正式揭牌。据悉,该研究所拥有3个中美院士实验室、12个海归PI实验室,汇聚合成生物学前沿力量的国际化团队,有望成长为具有世界影响力的研究机构。  合成生物学是近年来发展迅速的新兴前沿交叉学科,被认为是继“DNA双螺旋发现”和“人类基因组测序计划”

全球200多位科学家人工合成酵母染色体,目的究竟为何?

  演化生物学家Stephen Jay Gould曾经思索:如果将生命演化的历程像磁带一样倒带并重新播放,那将会发生什么呢?通过从零开始再造染色体,合成生物学家检验了古尔德的部分设想。他们在酵母中加入了人工合成的染色体,并观察经过改造的生物体是否还能正常发挥功能。  根据3月9日发表在《科学》期刊上

科技部“十二五”现代生物制造科技发展专项规划发布

关于印发十二五现代生物制造科技发展专项规划的通知国科发计〔2011〕587号  各省、自治区、直辖市、计划单列市科技厅(委、局),新疆生产建设兵团科技局,国务院有关部门科技主管单位,各有关单位:  为了贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,指导现代生物制造科技发展,加

Leroy Hood:系统生物学将揭开后基因组时代新篇章

  加利福尼亚理工学院教授,美国系统生物学研究所所长,美国科学院、美国工程院和美国医学院院士,美国总统科学顾问。Leroy Hood教授是国际系统生物学创始人,也是国际人类基因组计划倡导者之一。他多年从事分子免疫学、生物技术以及基因组学的研究,先后发表文章600多篇,获得专利14项。

杨焕明教授发表Science文章:二号染色体的人工合成

  生物通报道:2006年,中国科学院基因组研究所的杨焕明教授等人首先完成了所承担的3号染色体短臂末端“北京区域”(短臂由标志D3S3610至端粒区段约3千万个bp)的测序和分析,在Nature杂志公布了人类3号染色体的DNA测序结果和分析说明,时隔11年,包括天津大学、清华大学和深圳华大基因研究院

杨焕明教授发表Science文章:二号染色体的人工合成

  2006年,中国科学院基因组研究所的杨焕明教授等人首先完成了所承担的3号染色体短臂末端“北京区域”(短臂由标志D3S3610至端粒区段约3千万个bp)的测序和分析,在Nature杂志公布了人类3号染色体的DNA测序结果和分析说明,时隔11年,包括天津大学、清华大学和深圳华大基因研究院与美国等国家

2017年中国科学十大进展在京发布

  该项活动旨在加强对我国重大基础研究进展的宣传,激励广大科技工作者的科学热情和奉献精神,促进公众更加理解、关心和支持科学,在全社会营造良好的科学氛围。该项活动已成为我国基础研究传播工作的一个品牌,在科技界产生了良好反响。  1、实现星地千公里级量子纠缠和密钥分发及隐形传态“墨子号”卫星实现千公里级

中科院发布2017年中国科学十大进展

  “中国科学十大进展”遴选活动由科技部高技术研究发展中心举办,截至2018年已举办13届。研究进展由《中国基础科学》《科技导报》《中国科学院院刊》《中国科学基金》和《科学通报》五家编辑部推荐,由两院院士、973计划顾问组和咨询组专家、973计划项目首席科学家、国家重点实验室主任等专家学者经过初选和

科学大咖带你看懂2017年度中国科学十大进展

  科技部2月27日在北京公布了“2017年度中国科学十大进展”:实现星地千公里级量子纠缠和密钥分发及隐形传态;将病毒直接转化为活疫苗及治疗性药物;首次探测到双粲重子;实验发现三重简并费米子;实现氢气的低温制备和存储;研发出基于共格纳米析出强化的新一代超高强钢;利用量子相变确定性制备出多粒子纠缠态;

“人造生命”诞生引争议 科学家被指“扮演上帝”

  尚未打开的“黑匣子”  这项研究证明了文特尔的重要的观点,即人工合成的基因组被植入活体细胞后可以重新启动生命的复制程序。从根本上说,这也是合成生物学“重塑生命”的核心:生命的所有“零件”都能由化学方法合成,进而通过工程化的方式“组装”成实用的生物组织。对此,文特尔在听证会上表示,“将生命密码转换

新生命如何在实验室“被创造”

  第三部曲的演奏  克雷格·文特尔研究所的丹尼尔·吉布森小组选取了一种名为丝状支原体的细菌(供体细菌),其基因组只有108万个碱基对。研究人员把它的染色体(DNA)解码,然后利用化学方法一点一点地重新排列这种支原体的DNA序列,即对四个碱基对腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)

“发酵农业”或将解决人类温饱问题

  6月3日,在上海自然博物馆(上海科技馆分馆)举行的“绿螺讲堂·新问题沙龙”上,中科院院士、华大基因研究院理事长杨焕明表示,“发酵农业”未来或将解决人类的温饱问题。  杨焕明说,所谓“发酵农业”,即利用合成基因组学技术,在发酵罐里合成水稻、小麦、玉米等粮食以及各种蔬菜,使农业不再靠天吃饭,给酵母喂

是人造生命还是修改生命 “合成细胞”定义引争议

被冠以“人造生命之父”的克雷格·文特,只是认为其团队成功改造了新种类的细胞而已。  15年来,克雷格·文特尔(J. Craig Venter)博士一直追逐着一个梦想:从零开始构建出一个基因组,然后用它创造合成生命。现在,他和Craig Venter研究所(JC

里程碑式的突破

   首先想提一下,这次克雷格·文特尔的工作到底是人造细胞还是人造生命,因为媒体报道时这两个词都出现过。我觉得称人造生命可能更为合适,因为文特尔只是合成了基因组,并把这个基因组转移到另一个被去除了基因组即所谓被淘空的支原体“空壳”里去,这个“空壳”本身虽然有细菌细胞的膜和内含物,但没有生命活动,可是

中科院深圳先进院开发出人工基因组高效简化策略

最小真核基因组的构建是基因组学中的重要议题,被称为该领域的“圣杯”。通过基因组的精简,去除冗余基因,可为认识生命的起源和进化提供重要线索,有助于深化对基因组功能组成和运转方式的认识。2016年,最小原核基因组已由J. Craig Venter团队构建出来。面对更为复杂的真核生物基因组,如何构建其最小

我国科学家人工合成4条真核生物酵母染色体

  3月10日,《科学》杂志在封面推介中国科学家的4篇论文,介绍了天津大学、清华大学、深圳华大基因研究院在合成生物学方面的重大突破:完成4条真核生物酿酒酵母染色体的人工合成。这意味着人类在设计并合成复杂人工生命的过程中取得重大进展。我国也成为继美国之后第二个具备真核基因组设计与构建能力的国家。  继

最近生物科技界的这些传言和争论已经把我吓趴了……

  5月10日,周二,一个由科学家、律师、企业家和伦理学家等组成的150人团队,集结在位于波士顿的哈佛医学院,他们开了一个秘密的闭门会议。据《纽约时报》报道,这个会议的主办方没有邀请媒体,甚至都没有与会人员在Twitter上分享任何关于会议的内容。  两天后,消息泄露。《纽约时报》率先跟进报道了此事

科学研究拆掉围墙告别“各自为战”有多难

    今年,中国南方一个成立不足4年的年轻科研团队,十分罕见地吸引了来自美国工程院院士杰·基斯林的注意——后者因改造酵母生产青蒿素而闻名于世,被看作当代合成生物学的领军人物。很快,杰·基斯林就和这支团队开始了实质性合作,成立联合实验室,并列出一长串研究项目清单。这是他落地中国的第一个实验室,而且有

首届全国合成微生物学学术研讨会召开

  由中国微生物学会分子微生物学及生物工程专业委员会和上海市微生物学会共同主办,中科院上海生科院植物生理生态研究所中科院合成生物学重点实验室和上海医药工业研究院创新药物与制药工艺国家重点实验室(筹)联合承办的“首届全国合成微生物学学术研讨会”于9月26日只9月27日在上海举行。   

Nature:第一个完全合成且彻底改变DNA密码的生物诞生了

  发表在《Nature》上的一项研究显示,英国剑桥大学的科学家已经在实验室成功创造了世界上第一个完全合成并且彻底改变DNA密码的生命体。它是普遍存在于土壤和人类肠道中的大肠杆菌(Escherichia coli),与其天然近亲相似,但依靠一套较小的遗传指令存活。  这种细菌的存在证明,生命可以存在

叶克穷:改写大肠杆菌基因组的科学意义究竟几何

   合成生物学家日前报告了迄今为止意义最为深远的一项细菌基因组重写结果:他们成功换下了大肠杆菌64个遗传密码子中的7个,并通过在55个片段中合成脱氧核糖核酸(DNA)从而减少了遗传密码子的数量,科学家们还将这些碎片组装到了另一个有功能的大肠杆菌中。  有人认为这项发表在美国《科学》杂志上的研究成果

也许时间将为人造生命洗去忧虑

  摘要:一个名叫“辛西娅”(synthia)的人造生命体在美国私立科研机构克雷格・文特尔研究所诞生――上周末传出的这一消息立刻引起全球各方高度关注,并再次引发伦理争议。  有人认为文特尔夸大了人造生命的重要性,但更多科学家倾向于相信合成微生物的应用潜力。中科院生化与细胞研究所研究员郭礼和在接受本报

“用生命创造生命”一个名叫辛西娅的人造细胞

  早在1932年的《美丽新世界》里,赫胥黎就描述了有一天人类将在实验室内以人工方式制造婴儿,他在一张图纸上标明了如何“造人”的步骤。从宇宙大爆炸以来,地球上的生命都是自发演变的,以至于1996年克隆羊“多利”因为基因复制而引起轩然大波。然而,在今年3月24日出版的美国著名学术期刊《科学》上,美国科

首届全国合成微生物学学术研讨会成功举行

  由中国微生物学会分子微生物学及生物工程专业委员会和上海市微生物学会共同主办,中科院上海生科院植物生理生态研究所中科院合成生物学重点实验室和上海医药工业研究院创新药物与制药工艺国家重点实验室(筹)联合承办的“首届全国合成微生物学学术研讨会”于2010年9月26日―9月27日在上海举行

人造生命时代即将来临

人类基因组图谱绘制计划创始人J. Craig Venter 博士最近决定在数周或数月内研制出世界首个自由生人造生命(free-living artificial organism)。也许一个只含有几百个基因的细菌并不惹眼,但成功的话,将是人类历史中一个亮眼的里程碑,改变我们对生命概念的认知。 Ve