发布时间:2015-10-23 16:28 原文链接: Nature惊人发现:大脑一般的细菌

  人类大脑被誉为进化的最高杰作,而细菌则是一些低等的个体,它们之间似乎有天壤之别。然而加州大学圣迭戈分校的科学家们发现,细菌相互通讯的机制与人类大脑非常相似。这项研究发表在十月二十一日的Nature杂志上。

  “这一发现不仅改变了我们对细菌的看法,也改变了我们对大脑的认识,”这项研究的领导者,加州大学圣迭戈分校的副教授Gürol Süel说。“人类的感觉、行为和智力都取决于大脑神经元之间的电信号传导,这一过程由离子通道介导。现在我们发现,细菌也通过这样的离子通道进行通讯,并由此解决自己的代谢压力。由此可见,代谢压力触发的神经疾病可能具有古老的细菌渊源,人们可以从一个新角度来看这类疾病的治疗。”

  “我们对大脑电信号传导的理解,大多基于细菌离子通道的结构研究,”Süel说。但细菌如何使用这些离子通道一直是一个谜。为此,Süel及其同事对生物膜中的远距离通讯进行了研究。生物膜由数百万紧密聚集的细菌组成,对化合物和抗生素有很高的抗性。

  研究人员发现,当枯草芽孢杆菌组成的生物膜生长到一定大小的时候,保护性的边缘细菌会周期性地停止生长,以便营养物质(尤其是谷氨酸)流入生物膜的中心地带。正因如此,中心地带受到保护的细菌既可以生存下来,又能够抵抗化合物和抗生素。值得注意的是,人类大脑活动有一半是谷氨酸驱动的。

  研究人员认为,生物膜中远距离细菌之间的代谢调节可能涉及了电化学通讯。于是他们在生物膜的代谢振荡中监测了细菌细胞膜电位的改变。研究显示,膜电位的改变与生物膜的生长振荡相符,而且膜电位改变是离子通道介导的。

  进一步研究表明,生物膜的远距离电信号传导是通过钾离子实施的,钾离子扩散波协调着内部和外部细菌的代谢活性。去除细菌的钾离子通道,生物膜的电信号传导就无法进行。

  “跟我们大脑中的神经元一样,细菌也通过离子通道介导的电信号彼此交流,”Süel解释道。“生物膜里的细菌群体像一个‘细菌大脑’一样运作。”

  研究指出,这种细菌通讯机制与人类大脑的“皮层扩散性抑制”惊人的相似,而皮层扩散性抑制被认为与偏头疼和癫痫有关。“偏头疼和这种细菌通讯都是由代谢压力触发的,”Süel说。“这说明许多癫痫和偏头疼药物也能有效攻击细菌生物膜,帮助人们解决全球性健康难题——抗生素抗性。”

相关文章

研究解析微藻生物膜贴壁培养的光碳传输与生长机制

生物膜贴壁培养具有高光效、高产率、易采收和高效节水的巨大优势,是突破微藻生产效率和成本瓶颈的变革性培养技术之一,近十年来受到国内外广泛关注。不同于传统的微藻开放池和光反应器悬浮培养,人们对微藻生物膜的......

“简单”细菌生物膜“画”出复杂同心圆

一项近日发表于《细胞》的研究发现,细菌生物膜包含了被人们认为是植物和动物所独有的结构组织。长期以来,人们认为生物膜——像细菌和真菌等微生物形成的黏糊块状物——在生物学上很简单,只有一种原始的结构组织。......

我国科学家解析眼病相关离子通道高清结构

细胞膜离子通道对维持细胞正常生理功能有重要作用。当离子通道失调或突变时,心脏病、癌症、失明等疾病都有可能发生。最近,武汉大学人民医院教授沉吟课题组与合作者首次解析了一个与多种眼科疾病密切相关的离子通道......

沈吟课题组合作解析眼病相关离子通道高清结构

细胞膜离子通道对维持细胞正常生理功能有重要作用。当离子通道失调或突变时,心脏病、癌症、失明等疾病都有可能发生。最近,武汉大学人民医院教授沈吟课题组与合作者首次解析了一个与多种眼科疾病密切相关的离子通道......

听觉转导中的未解之谜明确听觉转导的离子通道

听觉不仅与人们日常生活紧密相关,也是科学领域的重要研究问题之一。亚里士多德定义的五种感官中,介导嗅觉、味觉、视觉、触觉的受体基因已被相继确定。但是,声音感知的核心问题——负责听觉转导的离子通道是由哪个......

谜团解开!最新研究确认真正的听觉转导离子通道

听觉不仅与人们日常生活紧密相关,也是科学领域的重要研究问题之一。亚里士多德定义的五种感官中,介导嗅觉、味觉、视觉、触觉的受体基因已被相继确定。但是,声音感知的核心问题——负责听觉转导的离子通道是由哪个......

解开五种感觉受体的最后谜团

听觉不仅与人们日常生活紧密相关,也是科学领域的重要研究问题之一。亚里士多德定义的五种感官中,介导嗅觉、味觉、视觉、触觉的受体基因已被相继确定。但是,声音感知的核心问题——负责听觉转导的离子通道是由哪个......

Science子刊:石墨烯生物膜超级结构及递药新模式

近日,中国科学院过程工程所与清华大学合作首次证明了二维材料氧化石墨烯能够与细胞膜形成三明治超级结构,并实现药物在膜磷脂层内的有效运输,开辟了药物精准递送新模式,为生物医药全新剂型的设计和新型纳米粒子的......

陈鹏宇、岳华团队:石墨烯生物膜超级结构及递药新模式

近日,中国科学院过程工程研究所与清华大学合作证明了二维材料氧化石墨烯能够与细胞膜形成三明治超级结构,并实现药物在膜磷脂层内的有效运输,开辟了药物精准递送新模式,为生物医药全新剂型的设计和新型纳米粒子的......

蛋白质工程技术助力探索离子通道激活机制

近日,北京师范大学王友军课题组及美国德克萨斯州A&M大学YubinZhou课题组采用蛋白质工程技术,巧妙地实现了膜蛋白在亚细胞器和质膜之间定位的切换,为研究细胞器膜蛋白的结构和功能提供了更加便......