发布时间:2018-01-04 14:18 原文链接: 端粒效应——揭开染色体与衰老之间的秘密

  衰老是个古老而神秘的话题,长生不老是人类一直追求的目标,而生物体的衰老却是一个必然的过程,是随着时间的推移,机体从构成物质、组织结构到生理功能的丧失退化的过程。

  近日,《实验医学杂志》刊发的一项研究表明我们的染色体会随着机体的变老而一起变老。那么我们能不能通过改变染色体来延缓衰老、保持健康长寿呢?目前,世界上很多科学家都在尝试解决这一问题。

  2016年《自然》杂志上的一项关于衰老的研究成果入选《科学》杂志甄选的“2016年十大突破”。无独有偶,近日,中科院上海神经科学研究所的蔡时青研究员课题组在《自然》杂志上发表的研究成果首次阐述了个体之间衰老速率差异的遗传基础,是近年来衰老领域取得的重大突破。这些最新成果使抗衰老的研究热度再次升高。

  染色体的“保镖”

  在生物的细胞核中,有一种载有遗传信息的线状物质,它们被称为“染色体”。染色体主要由DNA和蛋白质组成,是生物生长发育的“指导手册”。在染色体的末端有个染色体的“保镖”,即端粒。人类的端粒由6个碱基的重复序列和结合蛋白组成,它对染色体的功能有着重要的作用。

  端粒可类比为鞋带两端防止磨损的塑料套,像塑料套保护鞋带一样保护染色体。它能在保持染色体完整的同时,防止染色体彼此相互粘连,保护染色体上DNA的安全。遗憾的是,这个保镖需要不断作出牺牲:细胞每分裂一次,端粒就会缩短一点,细胞分裂次数越多,端粒就缩短得越多。通俗地说,就是细胞越老,端粒就越短。当它们变得太短时,细胞就不再分裂,开始变得不活跃、衰老直至死亡。因此,端粒又被称为生命体的“分子时钟”。

  端粒酶是细胞中一种负责延长端粒的酶。在年轻的细胞中,它在端粒末端加上碱基,可以让端粒免受过度磨损,使细胞分裂的次数增加。但随着细胞分裂,端粒酶的数量不足,端粒逐渐缩短,细胞开始老化。如果端粒酶的活性很高,就能保持端粒的长度,延缓细胞的老化。三位美国科学家因“发现端粒和端粒酶是如何保护染色体的”获得2009年诺贝尔生理学医学奖。但端粒酶也会帮助无用细胞的增殖,并促进癌症的形成,因此也被喻为“炸弹引信”。

  “长生不老”的钥匙

  因为端粒酶在细胞老化和癌化过程中都起着关键性的作用,所以被认为是“长生不老”的钥匙。而实验研究表明,端粒也不是永远只会变短,实际上也有可能变长。

  不久前,休斯顿卫理公会研究所的科学家采用RNA疗法的技术,发现可逆转细胞衰老。研究人员发现早衰症患儿的染色体端粒比常人要短,因此他们以儿童早衰症作为研究对象。该疗法首先将特定的RNA送入细胞内,RNA再向细胞传达“延长染色体端粒”的信息,从而促进端粒酶的生成。利用这种疗法,所有的细胞衰老标记物都得到了逆转。研究者Cooke表示,我们至少可以减缓或阻断患者机体中衰老的进度,他正计划对现有的疗法进行改进。

  此外,因为端粒酶对肿瘤细胞的永生化是必要的,所以它可以作为抗肿瘤药物的重要靶点。目前市场上基于端粒效应用于延长端粒的“端粒酶类”药物和检测试剂有很多,这些研究成果也引发了大量的炒作,有病例因服用增强端粒酶活性的药物而导致患上癌症。

  今年8月份,我国首个利用端粒酶技术进行肺部肿瘤辅助诊断的检测试剂——“端粒酶逆转录酶亚基(hTERT)mRNA检测试剂盒”经国家食品药品监督管理总局批准上市,为肺癌辅助诊断提供了一种快速、便捷的检测手段。

  另外,衰老不是一个恒定不变的过程,而且衰老速率受到多种因素的影响。《细胞》杂志上的一篇关于衰老的文章就总结出影响衰老的九大因素,除了端粒的耗损,还有营养代谢失调等因素。

  2009年诺贝尔生理学或医学奖获得者之一伊丽莎白·布莱克本在2017年1月份出版了《端粒效应》一书,书中介绍生活压力对端粒长度也有影响:母亲照顾生病的小孩的时间越长,她的端粒长度就越短,压力让她们的衰老加速。年龄越大的人,染色体末端越短;抽烟喝酒的人,染色体末端也较短。

  “抗老之路”任重而道远

  事实上,生命的智慧远比我们想象的深远得多。许多疾病都是由衰老造成的,如果我们能通过端粒效应解决这个问题,就能解决很多疾病。

  目前,各种新技术成功延长了染色体端粒的长度,这为战胜衰老导致的疾病带来了希望。科学家也正在研究是否能用药物遏制端粒酶,从而治疗癌症。药物能够延长端粒是极好的,但使用药物延长端粒很危险,我们还需要严格地测试它,改变生活方式比药物安全得多。

  深入研究染色体变化与衰老、癌症之间的关系,将是未来生命科学的重要突破。随着分子生物学的发展,衰老研究也将进入基因时代。生命科学发展至今,许多生命的奥秘还是未知数,有待进一步探究。因此,我们在抗衰老问题上还有很长的路要走。


相关文章

是谁塑造了细胞的形状?答案超乎想象

细胞是生命的基本单元,虽然它们堪称被现代科学研究得最仔细的生命组件,然而,许多基本进程细节都还是个谜,比如一个很基本的问题,细胞的卵形形状是如何形成的?这个问题处于生物学和物理学的交叉点上,加州大学圣......

新型的花青染料改善细胞pH值的测定

近红外的花青染料常用于研究细胞内部的机理,不过它们还远不够完美,在水中的效果就不好。近日,密歇根理工大学的研究人员开发出一种在水中也表现出色的花青染料,并在《ChemicalCommunication......

STEMCELLREPORTS:猪体细胞克隆研究获进展

近日,中国科学院广州生物医药与健康研究院赖良学课题组的最新研究成果,以XISTDerepressioninActiveXChromosomeHindersPigSomaticCellNuclearTr......

重金属等的细胞毒理机制研究取得进展

中国科学院生态环境研究中心环境化学与生态毒性学国家重点实验室刘思金研究组,在长链非编码RNA调控镉、砷化物和纳米银的细胞毒性研究方面取得新进展。相关研究成果发表在CellDiscovery、Toxic......

细胞可能会从基因层面“听音”

据新华社报道,日本京都大学研究人员最新发现,细胞能在基因层面对声音产生应答,这有望帮助揭开生命与声音的根本关系。声音是动物个体识别外界环境以及交流的主要途径,动物个体声音的重要性不言而喻,然而几乎没有......

想不到吧?PLOSBiology:人体细胞内部温度可达50°C

作为细胞的“发电厂”,线粒体将营养分子氧化所释放的自由能的一部分,转化为ATP和细胞所需的其他有用的能量形式。然而,这种能量转换过程远没有达到100%的效率,而且释放的能量很大一部分被耗散为热能。这就......

细胞生长因子获解或找到衰老“密码”

温州医科大学—温州大学生物医药协同创新中心主任李校堃教授1月23日在接受科技日报记者专访时透露,他领衔的科研团队与美国纽约大学医学中心MoosaMohammadi教授团队经数年联合攻关,在国际上率先解......

干细胞的命运抉择:决定就在一瞬间

成体干细胞通常具有多能性,即能够产生多种不同的子细胞,但潜在的命运决定机制尚不清楚。这项研究发现,在果蝇的肠上皮干细胞中,一个转录因子的瞬时表达,决定了干细胞所产生的子细胞类型。北京生命科学研究所,中......

TED演讲|诺奖得主:永生不老的科学

我成为科学家并不让人意外。我在离这里很远的地方长大,我小时候非常有好奇心,对所有的生物都好奇。我以前会捡起有致命剧毒会螫人的水母,然后对它们唱歌。所以,开始我的职业生涯时,我非常好奇,想解开最根本的谜......

研究显示减数分裂过程中花束期端粒保护新机制

端粒是存在于真核细胞染色体末端的一小段DNA-蛋白质复合体,对于保持染色体的完整性和控制细胞分裂周期具有不可替代的作用。端粒长度反映细胞复制史及复制潜能,被称作细胞寿命的“有丝分裂钟”。端粒在减数分裂......