发布时间:2015-05-19 14:59 原文链接: Cell盘点最受关注的癌症综述

  癌症一直被认为是一种逃离正常状态的急速增长疾病,其细胞的生长已经发生了变化。然而尽管这么多年来,科学家们已经发现了这种疾病会随着时间的推进,出现新的突变,但是近期基因组测序研究,以及单细胞分辨率技术却帮助我们解决了癌症是如何变化发展这一谜题。

  以下是Cell出版社旗下最多读者点击的癌症综述:

  Hallmarks of Cancer: The Next Generation

  这篇综述性文章的重要性可从其长期占据榜单中窥见一斑:Weinberg教授继之前的癌症综述后,又发表了一篇升级版综述——Hallmarks of Cancer: The Next Generation,这篇同样也是与Douglas Hanahan合作的论文长达29页,简述了最近10年肿瘤学中的热点和进展,包括细胞自噬、肿瘤干细胞、肿瘤微环境等等,并且将原有的肿瘤细胞六大特征扩增到了十个,这十个特征分别是:

  自给自足生长信号(Self-Sufficiency in Growth Signals);抗生长信号的不敏感(Insensitivity to Antigrowth Signals);抵抗细胞死亡(Resisting Cell Death);潜力无限的复制能力(Limitless Replicative Potential);持续的血管生成(Sustained Angiogenesis);组织浸润和转移(Tissue Invasion and Metastasis);避免免疫摧毁(Avoiding Immune Destruction);促进肿瘤的炎症(Tumor Promotion Inflammation); 细胞能量异常(Deregulating Cellular Energetics);基因组不稳定和突变(Genome Instability and Mutation)。

  Macrophages and Therapeutic Resistance in Cancer

  肿瘤细胞如何应对治疗不仅仅依赖于基因畸变的复杂性他们港口,但也是受由众多肿瘤微环境的动态属性调节的。识别和定位的关键信号通路途径,然后通过增强治疗剂增强抗肿瘤免疫反应,对改善治疗效果和患者延长寿命方面具有巨大的潜力。巨噬细胞是稳态调节组织和肿瘤微环境的关键。因此,治疗剂对巨噬细胞的存在和/或生物活性上的影响,显示了这么方面工作在临床前模型应用前景,同时这项工作正在评估。本文通过巨噬细胞调解治疗剂反应讨论到目前为止识别的的分子/细胞通路。

  Cancer Epigenetics: From Mechanism to Therapy

  在过去的15年间,科学家们进行了许多关于DNA表观遗传调控的研究,DNA甲基化,组蛋白修饰、核小体重塑,还有RNA介导的靶向调控生物学机制都是分析癌症成因的关键问题。

  这篇综述提出了这些表观遗传途径背后的基本规则,并指出这些机制如果出现问题,就会引发癌症。此外针对染色体调控的表观遗传药物临床和临床前的实验结果也给了我们不少希望,也许是时候全面肯定癌症表观遗传的中心作用了。

  Cancer Invasion and the Microenvironment: Plasticity and Reciprocity

  癌症侵袭是一个细胞和组织驱动性的过程,包括了物理性,细胞和分子各种决定因素调整和作出应答,贯穿了癌症扩张的整个进程。

  癌症侵袭由肿瘤细胞中调控细胞骨架动力学,细胞基质和细胞间相互作用等多方面的信号途径驱使和维持。这篇综述就是描述了这种细胞基质,细胞间黏合,蛋白酶及细胞因子系统等癌细胞组织侵袭背后的故事。

  从中研究人员解释了肿瘤细胞和周围组织结构的重编程如何引导细胞侵袭,和产生不同传播模式的机制,由此获得的这种“可塑性”又是如何帮助不同癌症侵袭具有不同的路线和程序,增加其异质性的。

  Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors

  将细胞衰老(senescence,又称replicative sene-scence)与癌前病变及恶性肿瘤联系在一起逐渐形成新的思维模式,探讨细胞癌变机制与衰老过程的关系,会对肿瘤学的研究带来很多有趣的启示。

  肿瘤是一种典型的与年龄相关的疾病,多在老年人发生。细胞分裂达到一定限度时,就进入衰老阶段。肿瘤与衰老在形成过程中似乎是一个此长彼消、相互排斥的关系,细胞的衰老又可能成为其形成肿瘤的天然屏障。很多肿瘤抑制因子保护机体不发生恶性肿瘤。一些机制保护基因组不被破坏或突变,另一些机制通过凋亡和细胞衰老过程来消除和阻止潜在肿瘤细胞的增殖。已有充足的证据提示,体内发生凋亡或细胞自杀可以抑制肿瘤形成。然而,细胞衰老阻止细胞分裂并抑制肿瘤的证据也越来越多了。发表在Nature、Science和Cell上的几篇文章及评论,通过不同实验得出相似的结论,即机体内的细胞衰老是一种重要的抗肿瘤防卫机制,衰老反应是一种避免细胞发生肿瘤转化的安全控制机制。

  Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues

  研究人员绘制出了一张范围广,种类多的人类组织和干细胞的染色质全基因组图谱,获得了功能性遗传学元件研究突破,由此进行了前所未有的功能基因组诠释。

  自从在癌基因和肿瘤抑癌基因中发现最早的频发突变(recurrent mutation)以来,人们已经明确癌症在很大程度上是一种遗传疾病。几乎所有的人类肿瘤都保留着反映其起源组织的表型,由此突显了癌症生物学中表观遗传学的中心地位。事实上,科学家们也越来越认识到可传递的表观遗传改变(对基因组或其支架的化学修饰,不涉及核苷酸序列改变)有可能重新获得,而这些表突变(epimutation)也可能会促使癌变。

  由此癌症表观遗传学蓬勃的发展了起来,其中一个关键元件就是染色质,染色质组织差异是造成单遗传背景,多细胞状态的关键,然而目前关于体内组织这一部分的情况,科学家们还知之甚少。

  在这篇文章中,研究人员在之前研究的基础上,绘制出了一张范围广,种类多的人类组织和干细胞的染色质全基因组图谱,获得了功能性遗传学元件研究突破,由此进行了前所未有的功能基因组诠释,分析了这些遗传学元件在发育阶段,细胞谱系,细胞环境等方面的调控机制。

相关文章

九院超级显微外科技术解决病痛

近日,上海交通大学医学院附属第九人民医院口腔颌面-头颈肿瘤科成功完成一例高难度超级显微外科颌面头颈部淋巴管-静脉吻合术(LVA),术后患者眶周和颌面部的淋巴水肿症状迅速得到缓解,改善明显。3年前,魏女......

逆转肿瘤细胞多药耐药研究获进展

P-糖蛋白(P-gp/ABCB1)是一类典型的多药耐药转运蛋白,可识别和促进肿瘤细胞的药物外排,限制了药物的疗效。先前眼发现磷脂酰肌醇-3-激酶(PI3K)的110α和110β亚单位是抑制P-gp介导......

“疲惫不堪”的T细胞的二次机会

不断与癌症或其他疾病作斗争会耗尽我们免疫系统的T细胞,阻碍它们杀死入侵者的能力。一项新的研究发现了一种使耗尽的T细胞复苏的方法,以便它们准备好再次战斗,提高癌症免疫疗法的有效性。作为白细胞的一种类型,......

特殊的细胞穿透肽为下一代基因编辑技术提供了可能

研究人员已经开发出一种高效的新基因编辑方法,它使用基于病毒的蛋白质片段。该方法可用于提高用于治疗癌症和其他疾病的现有细胞和基因疗法的水平。利用CRISPR技术简单而高效地修改基因已经彻底改变了生物医学......

张锋创立的Editas公司发布基因敲入技术,助力开发新疗法

撰文|王聪编辑|王多鱼排版|水成文尽管CRISPR-Cas基因编辑技术在基因敲除方面取得了重大突破,并深刻改变了基因编辑领域乃至整个生命科学的研究模式。但CRISPR-Cas基因编辑技术通常是以破坏D......

研究:低技术干预措施增加了农村妇女的癌症筛查

一项新的研究发现,使用DVD等低技术干预措施和通过电话提供的患者导航服务会增加农村妇女接受癌症筛查的几率。这项发表在JAMANetworkOpen上的研究从印第安纳州和俄亥俄州的农村地区招募了近千名女......

结直肠癌有望成为第二个被人类“消灭”的癌症

近期,国家癌症中心/中国医学科学院肿瘤医院发布了2016年中国恶性肿瘤流行数据,数据收集截止时间为2019年8月31日,包含了31个省(区、市)的数据,覆盖3.8亿人。与以往不同,该报告首次公布了各省......

AACR2023:靶向CD70的异体CART细胞有望治疗转移性肾细胞癌

由来自美国德克萨斯大学MD安德森癌症中心的研究人员领导的1期临床试验结果显示靶向CD70的异体嵌合抗原受体(CAR)T细胞(CAR-T)疗法ALLO-316在转移性透明细胞肾细胞癌(clearcell......

AACR2023:靶向CD70的异体CART细胞有望治疗转移性肾细胞癌

由来自美国德克萨斯大学MD安德森癌症中心的研究人员领导的1期临床试验结果显示靶向CD70的异体嵌合抗原受体(CAR)T细胞(CAR-T)疗法ALLO-316在转移性透明细胞肾细胞癌(clearcell......

华中科技大学的研究者们揭示了非小细胞肺癌的新靶点

肺癌是呼吸系统最常见的恶性肿瘤。非小细胞肺癌(NSCLC)约占所有肺癌的85%,患者的5年生存率低于15%。一些研究表明,微小RNA(miRNA)参与了NSCLC的发展。事实上,miRNAs是诱导癌症......