一位小朋友摸到静电球的球壳,头发立刻像刺猬般根根直竖,这是科技馆里很常见的场景。如果一个碳纳米管束被人为附加上足够的电荷,又会是怎样一幅景象呢?
当碳纳米管束带的电荷达到一定程度时,在电子显微镜下,它会形成一种独特、新奇的像树一样的放射状格局。不仅如此,这些呈树枝状分离的碳纳米管还具有较小的直径(3纳米),有的甚至是单根的碳纳米管。这是国家纳米科学中心研究员孙连峰与中国科学院物理所解思深院士等人合作研究的最新成果。这项工作得到了国家自然科学基金和中国科学院“百人计划”等的资助。相关成果发表在最新一期的《纳米快报》上。
遭遇瓶颈的化学分离方法
单壁碳纳米管是一种具有战略意义的新兴材料,它在复合材料、平板显示器、真空电子器材、生物探测器、抗电磁干扰材料等方面有广泛的应用。
目前,科研人员已经能够根据需要大量制备单壁碳纳米管。“但是,由于单壁碳纳米管结构独特,性质奇异,管与管之间存在比较大的相互吸引力,科学家所制备的碳纳米管往往相互纠缠,形成碳纳米管束。”孙连峰说,“如果不能有效地分离出单根碳纳米管,就意味着无法对单根碳纳米管器件的制备及其物理特性展开相关研究。因此,如何将碳纳米管分离是需要研究解决的重要问题。”
电泳分离法和层离法是现在最常用的碳纳米管束分离方法。孙连峰指出,这些现在常用的分离方法大多是化学方法。这些方法往往涉及到多种化学试剂(如表面活性剂)的使用,并且需要经过多步物理、化学过程才能完成。这些化学方法虽然可以有效地分离出单根碳纳米管,但由于存在掺杂效应,可能改变了碳纳米管本身的固有性质,而且得到的单壁管长度也大都不理想。
比如说,电泳分离法就首先要使用表面活性剂对碳纳米管束进行处理,然后使用超声波冲击,最后在电泳池里分离。“这就产生了许多问题,碳纳米管有可能吸附表面活性剂分子从而改变自身的物理特性,从而使原来呈现的金属性或者是半导体性发生改变;另外,超生波的冲击还可能会破坏碳纳米管的结构,即便最后能够获得结构完整的管,一般来说长度也只有200纳米左右。”孙连峰说,“这给后续研究造成了诸多不便。因此,探索全新的、避免化学修饰的分离方法,是单壁碳纳米管以及器件研究的一个重要问题。”
意外发现的物理分离方法
“发现静电对碳纳米管束的分离作用纯属偶然。”孙连峰笑道,“一开始我们并没有计划要用电流来分离碳纳米管束,只是进行另一个实验的时候,意外发现了当碳纳米管束带有大量电荷的时候会产生‘爆炸’现象。”
这种碳纳米管束意外分离的现象当然引起了他们的关注,为了寻找“爆炸”的原因,他们进行了大量实验。
孙连峰解释说:“这种分离方法实际上利用的是最基本的同种电荷相互排斥的原理,让一束单壁碳纳米管带上同种电荷,当电荷之间的排斥力大于管之间的相互吸引力时,‘爆炸’就发生了。”
孙连峰把这种全新的碳纳米管物理分离方法命名为库仑爆炸法。相互分离的碳纳米管形成的那种独特、新奇的放射状格局,非常类似于科技馆里小朋友触摸静电球后怒发冲冠的样子,于是它被称为“纳米树”(nanotree)。纳米树的树枝大小和长度不一,有的树枝可能就是单根的单壁碳纳米管,长度则可以达到5微米以上。
为了确认库仑爆炸法并没有破坏分离后的碳纳米管的结构,孙连峰研究组进行了大量的验证工作。
通过原子力显微镜(AFM)、拉曼光谱(Raman)等实验证明,库仑爆炸法并不会破坏碳纳米管本身的结构。
另外,孙连峰研究组还利用碳纳米管均匀带电模型,对发生库仑爆炸所需的理论电压进行了计算,结果与实验数值十分接近。
不过,孙连峰对库仑爆炸法还是表示了谨慎的乐观。他指出,由于用于分离的碳纳米管束形状和结构不一,库仑爆炸法的可控性还不是很理想。
接下来,孙连峰准备在库仑爆炸法分离出来的纳米树上,测试单壁碳纳米管的物理特性,以及分离后单壁碳纳米管加上电极后会有什么有趣的事情发生。
“虽然每个纳米树的形状可能都不一样,但如果只是选取一个三端或者是四端结构的话,实际上我们已经制备出了多端器件的雏形,希望我们接下来的工作能够将多端器件研究向前推进一大步。”孙连峰说。
2025年已成为人工智能(AI)全面融入人类日常生活的一年。无论是工作、娱乐、学习还是科研,AI的影响力已无处不在。美国《福布斯》杂志近日报道预测,2026年,AI所带来的长远影响将日益清晰,并持续为......
近年来,中国科学院院士种康有一个心愿,那就是帮助寻找适合农业发展的资金渠道。日前,在国际草原与草业大会上,种康接受了《中国科学报》采访,他从草原发展过程中生态、生产、生活的相互融合出发,讲述了科学技术......
图纳米多特异性抗体设计策略。(a)基于融合蛋白复合型“纳米适配子”构筑纳米多特异性抗体;(b)纳米多特异性抗体的抗肿瘤机制在国家自然科学基金项目(批准号:52130301、32430059、32071......
当前,开发可再生的生物基材料是替代传统塑料、推动可持续发展的关键路径之一。作为颇具潜力的生物基平台化合物之一,2,5-呋喃二甲酸基聚酯却受困于强度-韧性-阻隔性的“性能三角”权衡难题。中国科学院宁波材......
巴西奥斯瓦尔多克鲁兹基金会研究人员发现了纳米粒子有效抑制癌细胞发展的相关机理,即纳米粒子能有效抑制癌细胞增殖,也能阻止肿瘤向其他器官转移。相关论文发表在最新一期《癌症纳米技术》上。研究人员将患有乳腺癌......
6月28日,2025中关村论坛系列活动——第七届纳米能源与纳米系统国际会议(NENS2025),在北京开幕。大会由中国科学院北京纳米能源与系统研究所主办,聚焦“纳米能源与纳米系统前沿与应用”这一主题,......
由美国俄勒冈州立大学、俄勒冈健康与科学大学和芬兰赫尔辛基大学组成的国际团队,近日研发出一种创新性的纳米粒子载体,能够像精准导航的无人机,将基因药物直接投送至肺部病灶。这项同时发表于《自然·通讯》杂志和......
2025年4月28日,庆祝中华全国总工会成立100周年暨全国劳动模范和先进工作者表彰大会在北京人民大会堂隆重举行。习近平总书记等党和国家领导人为全国劳动模范和先进工作者代表颁发荣誉证书。我院陈学东(华......
3月20日至22日,“科技引领振兴·院士智汇辽宁”东北等地区中国科学院院士年度学习交流活动在辽宁沈阳举办。中国科学院副院长、党组副书记吴朝晖,辽宁省委常委、副省长张立林出席活动并讲话。54位中国科学院......
3月17日至19日,华南地区中国科学院院士年度学习交流活动在深圳举行,中国科学院副院长、党组副书记吴朝晖,深圳市政府副市长、党组成员代金涛和33位中国科学院院士出席了此次活动。活动由深圳中国科学院院士......