溶酶体是细胞中主要的降解处理器,参与了细胞死亡途径。一项利用现有药物的研究表明,溶酶体可以作为理想的药物靶标,用于选择性摧毁癌细胞。
生物通报道:近几十年来,科学家们展开了许多针对癌症阿喀琉斯之踵的研究,想方设法杀伤肿瘤细胞,而不影响正常细胞。其中癌症化疗开始于20世纪40年代,促进了我们对于癌症生物学的更多了解,研发越来越精确的靶向治疗方法。其中大多数方法还是靶向癌细胞的异常增殖行为,而最新的一项研究则提出了一种新抗癌靶标:溶酶体。
长期以来,溶酶体都被误认为是细胞的“垃圾桶”,但我们现在知道这一结构更像是细胞的“胃”。通过溶酶体,大分子可由水解酶进行降解,这些酶包括各种负责蛋白降解的蛋白酶,降解后细胞也能获得相应的营养成分。
而且更重要的是,溶酶体参与了多种细胞过程,如膜修复,病原体防御,细胞自噬,以及信号传导。在肿瘤细胞中的溶酶体数量更多,体积更大,而且比正常细胞蛋白酶活性更高,由此释放到细胞外空间的组织蛋白酶cathepsin也能促进肿瘤的发展。
溶酶体也参与了细胞死亡过程——溶酶体释放的某些组织蛋白酶被认为启动了细胞凋亡和细胞凋亡样途径。而肿瘤细胞似乎能通过调用蛋白热休克蛋白70(Hsp70),克服这种死亡的威胁。
Hsp70能特异性结合在溶酶体腔囊泡膜上的一种脂质上,这种脂质称为双磷脂bis(monoacylglycero)phosphate (BMP),带负电荷,从而激活酸性鞘磷脂酶(ASM),后者能降解脂质鞘磷脂,鞘磷脂是细胞膜上的重要组成成分。
研究人员发现,有趣的是,ASM活性增高似乎能增强溶酶体的完整性。由此,在最新这篇文章中,研究人员提出假设:在癌细胞中抑制ASM的活性将增加溶酶体的脆性, 促进细胞死亡(如图)。
之前的研究表明已经用于治疗抑郁症,过敏症和高血压的阳离子两亲性药物:CADs能调控ASM。当溶酶体pH值低时,这种药物能干扰ASM之间的电信号相互作用。
研究人员分析了CAD对几种类型癌细胞的治疗效果,发现相比于这种药物对非转化细胞生存能力的影响,CAD能以更低浓度和在更短曝光时间内杀死癌细胞。并且CAD的处理也能减少动物模型中肿瘤的生长。此外,作者还发现一些对许多其他抗癌药物产生抗性的癌细胞,CAD也能处理,令人着迷的是,这种药物竟能恢复相比对其他药物的敏感性。
这项研究完成了CAD癌症治疗的深度解析和药理及流行病学研究,不过虽然CADs是一种相对比较便宜,且副作用较少的药物,但是若单独使用,其在溶酶体杀死途径中的活性恐怕还是不够,因此与其他化学疗法的化合物联合治疗可能是可取的。未来的研究也将针对这一方面进行更深入的探索。
No.1溶酶体溶酶体是细胞内的“消化车间”,其内部的酸性环境和丰富水解酶能降解各种生物大分子。对于药物递送而言,溶酶体是一把双刃剑:作为细胞的“消化车间”,溶酶体能高效降解外来异物,这是细胞天然的防御......
据10日发表在《细胞·报告医学》期刊上的一项最新研究,美国马萨诸塞大学阿默斯特分校团队开发出一种预防动物癌症的纳米疫苗,在预防小鼠黑色素瘤、胰腺癌和三阴性乳腺癌方面表现出显著效果。接种该疫苗的小鼠中,......
国际期刊《内分泌学前沿》日前刊登的一项新研究揭示,一种特殊基因对肠道吸收维生素D及其后续代谢过程至关重要,阻断或抑制该基因能够选择性抑制癌细胞生长。这一发现在癌症治疗等精准医学领域具有广阔应用前景。维......
巴西奥斯瓦尔多克鲁兹基金会研究人员发现了纳米粒子有效抑制癌细胞发展的相关机理,即纳米粒子能有效抑制癌细胞增殖,也能阻止肿瘤向其他器官转移。相关论文发表在最新一期《癌症纳米技术》上。研究人员将患有乳腺癌......
中国科学院院士、生物物理研究所研究员张宏团队在自噬研究方面取得进展。该研究发现了自噬关键蛋白ATG-9通过调控磷脂翻转酶活性以促进受损溶酶体修复的分子机制。这一发现为溶酶体功能障碍相关疾病的治疗提供了......
溶酶体是细胞内的单层膜囊泡状细胞器。有研究发现,溶酶体是关键的细胞活动和信号转导的枢纽。溶酶体的稳态失衡介导退行性疾病、溶酶体贮积症、恶性肿瘤等疾病的发生发展,是开发新治疗策略的切入点。自噬是细胞的保......
在与癌症的博弈中,胰腺导管腺癌(PDAC)始终是难以攻克的堡垒,其五年生存率不足10%,素有“癌王”之称。传统研究聚焦于基因突变与免疫逃逸,却忽视了肿瘤微环境中一个隐秘的“共谋者”——周围神经系统。2......
英国诺丁汉大学药学院的科学家在研究一种由毛虫真菌产生的化学物质方面取得了新进展。这一成果已发表在《FEBS快报》上。研究表明,这种化学物质能够与基因相互作用,从而阻断癌细胞的生长信号,为开发新的抗癌药......
人类细胞中的蛋白质工厂远比我们想象的要复杂多样。荷兰癌研所科学家证实,癌细胞可利用这些核糖体来增强它们的“隐形”能力,从而躲避免疫系统的追踪。相关论文21日发表在《细胞》杂志上。这一发现改变了人们对核......
拓扑异构酶I(TOP1,TopoisomeraseI)是一种能促使DNA放松并预防和消除转录过程中扭转应力(torsionalstress)的重要酶类,然而,调节TOP1酶类活性背后的机制,目前研究人......