发布时间:2021-05-21 15:22 原文链接: 一文带你全方位看懂拉曼光谱

  拉曼光谱(Raman spectra)以印度科学家C.V.拉曼(Raman)命名,是一种分子结构检测手段。拉曼光谱是散射光谱,通过与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息。以横坐标表示拉曼频移,纵坐标表示拉曼光强,与红外光谱互补,可用来分析分子间键能的相关信息。

  拉曼光谱原理

  拉曼效应:起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。

  拉曼效应是光子与光学支声子相互作用的结果。光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。

  物质与光的相对作用分为三种:反射,散射和透射。根据这三种情况,衍生出相对应的光谱检测方法: 发射光谱(原子发射光谱(AES)、原子荧光光谱(AFS)、X射线荧光光谱法(XFS)、分子荧光光谱法(MFS)等),吸收光谱(紫外-可见光法(UV-Vis)、原子吸收光谱(AAS)、红外观光谱(IR)、核磁共振(NMR)等),联合散射光谱(拉曼散射光谱(Raman))。拉曼光谱应运而生。

  拉曼频移(Raman shift):拉曼光谱的横坐标称作拉曼频移。拉曼散射分为斯托克斯散射和反斯托克斯散射,通常的拉曼实验检测到的是斯托克斯散射,拉曼散射光和瑞利光的频率之差值称拉曼频移(Raman shift):Δν=| ν 0 – ν s |, 即散射光频率与激发光频之差。Δv取决于分子振动能级的改变,所以他是特征的,并且拉曼光谱与入射光波长无关,适应于分子结构的分析。

  拉曼发展历史

  1922年,斯梅卡尔预言新的谱线频率与方向都发生改变。

  1928年,在气体与液体中观测到一种特殊光谱的散射,也因此获1930年诺贝尔物理奖。

  同年,曼迭利斯塔姆、兰兹贝尔格在石英中观测到拉曼散射。

  1928~1940年,受到广泛的重视,曾是研究分子结构的主要手段。

  1940~1960年,拉曼光谱的地位一落千丈。主要是因为拉曼效应太弱,当时测试对样品测试的各项要求较为苛刻,拉曼光谱的应用一度衰落。

  1960年以后,激光技术发展,激光成为拉曼光谱的理想光源,随着不断改进,拉曼光谱广泛应用,越来越受研究者的重视。

  拉曼测试

  拉曼光谱可测试物质组成,张力和应力,晶体对称性和取向,晶体质量,物质总量,物质官能团的信息等

  拉曼光谱与红外光谱的比较:

  拉曼光谱与红外光谱都能获得关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团。但两者产生的原理和机制都不同,在分子结构分析中,拉曼光谱与红外光谱相互补充,一些在红外光谱无法检测的信息在拉曼光谱能很好地表现出来。

  红外光谱侧重于检测基团,适用于极性键,多用于测有机物,拉曼光谱检测分子骨架,适用于非极性键,有机无机均可测试。

  样品要求:

  拉曼光谱测试对象与红外光谱类似,多用于检测有机官能团和键能之间的信息(对金属类检测意义不大,但也有部分文献提到以拉曼光谱检测反应产物)。信号强一些的固体样品可直接测定,样品制备时稍微压一下即可。拉曼信号比较弱的材料就需要做增强处理。测试液体的话,就要注意容器的材料,最好是避免产生荧光。

  疑难解答

  1.如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。

  答:聚焦位置不对,聚在玻璃上了,用凹面载玻片,液体量会比较多,然后用显微镜聚焦好就可以了,如果液体有挥发性,最好液体上用盖玻片,然后焦点聚焦到盖玻片以下。

  2. 做生物样品的拉曼光谱,获得的图里面有很强的荧光,有人说,如果拉曼得不到就用其荧光谱。那么在拉曼谱里面得到的荧光背景,是真正的荧光特征谱吗?这和荧光光谱仪里面的荧光图有什么区别?

  答:拉曼谱中的荧光和荧光谱中的荧光是一样的,只要激发波长和功率密度相同。但有一点要注意,不同波长的激发光照射样品,得到的拉曼相近,但荧光可以有很大不同,甚至相同波长不同功率激发,荧光谱都大不一样。

  3. 什么是共焦显微拉曼光谱仪?

  答:共焦拉曼指的是空间滤波的能力和控制被分析样品的体积的能力。通常主要是利用显微镜系统来实现的。

  4. 激光拉曼测试,样品如何预处理?

  答: 一般来说,样品都不需要做预处理,不象红外那样麻烦。分析固体和液体比较容易,气体就难了,除非密度很大,否则只能用大型拉曼。

相关文章

重磅发布|奥谱天成推出ATR8800高端拉曼光谱深度定制解决方案

奥谱天成自主研发的ATR8800系列高分辨显微拉曼光谱仪,自发布以来,凭借卓越的光谱分辨率、稳定的系统性能与优秀的信噪比表现,已在材料科学、生物医药、化学分析、新能源等领域获得广泛应用与高度认可。在结......

BCEIA2025巅峰对话|奥谱天成打破技术壁垒,让中国光谱技术走向世界

2025年9月10日至12日,第二十一届北京分析测试学术报告会暨展览会(BCEIA2025)在北京中国国际展览中心顺义馆盛大举行。本届展会以“辉煌四十载 再谱新篇章”为主题,吸引了众多分析测......

从代理之殇到技术之光:贝拓科学重构材料分析仪器格局

——广州贝拓科学有限公司联合创始人梁世健总经理专访当跨国巨头一纸通知终止代理合同时,这家华南代理商90%的业绩瞬间归零——广州贝拓科学却用十年时间完成了从"濒死代理商"到"......

布鲁克光谱:高速高质量成像让“光谱之眼”识别万物

光谱技术作为近代光学计量的重要分支,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势,已广泛应用于深空探测、环境监测、航空航天、精准医疗、智慧农业等诸多领域。为了推动光谱技术的应用与融合,中......

各向异性层状材料角分辨偏振拉曼光谱定量预测研究获进展

近日,中国科学院半导体研究所谭平恒团队基于对各向异性层状材料黑磷(BP)、Td相二碲化钨(Td-WTe₂)的研究提出一项新理论,任意衬底上的各向异性层状材料,其角分辨偏振拉曼强度(ARPR)都可以通过......

基于表面增强拉曼光谱技术的免疫层析传感研究取得进展

血栓调节蛋白(TM)是反映内皮功能障碍的关键生物标志物,但当前尚缺乏简便且快速的检测手段。例如,基于常规金纳米颗粒(AuNPs)的比色免疫层析法(ICA)因灵敏度不足,无法实现对痕量生物标志物的有效检......

应用|共聚焦拉曼光谱在半导体材料分析中的应用:以Mg₂Si/bSi异质结构为例

01背景介绍共聚焦拉曼光谱技术是一种基于激光散射效应的非破坏性分析手段,通过探测材料中分子键的振动模式,提供化学成分、晶体结构及应力分布等信息。其核心原理为:1.激光激发:单色激光(如473nm)聚焦......

瑞金医院开创无创血糖检测技术拉曼光谱重大突破

2025年2月5日,上海交通大学医学院附属瑞金医院国家内分泌代谢病临床研究中心王卫庆教授团队与瑞金医院医学芯片研究所及上海近观科技的陈昌研究员团队合作在《自然代谢》(NatureMetabolism)......

我国学者实现亿级原子生物分子拉曼光谱量子力学模拟

图在国产超算上实现包含亿级原子的生物分子体系的拉曼光谱量子力学模拟在国家自然科学基金项目(批准号:T2222026)等资助下,中国科学技术大学精准智能化学重点实验室商红慧教授、杨金龙教授团队与中国科学......

我国学者实现亿级原子生物分子拉曼光谱量子力学模拟

图在国产超算上实现包含亿级原子的生物分子体系的拉曼光谱量子力学模拟在国家自然科学基金项目(批准号:T2222026)等资助下,中国科学技术大学精准智能化学重点实验室商红慧教授、杨金龙教授团队与中国科学......