中国科学技术大学中科院微观磁共振重点实验室彭新华教授、江敏副研究员等在量子精密测量和超越标准模型领域取得重要进展,利用超灵敏量子精密测量技术实现了超越标准模型的新玻色子直接搜寻,质量大于65μeV的轴子观测界限提升国际纪录至少10个数量级。相关研究成果于7月26日以“Limits on Axions and Axionlike Particles within the Axion Window Using a Spin-Based Amplifier”为题发表于国际著名学术期刊《Physical Review Letters》上[Phys. Rev. Lett. 129, 051801 (2022)]。国际知名学术网站Phys.org以“Usingquantum technology to constrain new particles”为题专文报道了该工作。
粒子物理标准模型的建立是20世纪物理学取得的最重大成就之一,成功预言希格斯玻色子和W±、Z0玻色子等,极大促进了基础物理学研究。尽管已经取得了巨大的成功,标准模型仍然存在着许多疑难问题,包括强CP问题、中微子振荡、重子不对称性以及暗物质和暗能量。为解决这些难题,许多理论预言存在超越标准模型的新粒子和相互作用。两位诺贝尔奖得主Weinberg和Wilczek提出一种新玻色子——轴子(Axion),其存在可以完美的解释量子色动力学中的“强CP”问题。轴子还可以作为暗物质候选粒子,有望解答“宇宙由何组成?”这一世界性难题。世界上的大型高能实验室比如瑞士的CERN、德国的DESY、日本的KEK、韩国的IBS 等均投入大量精力搜寻轴子。在美国至少有五个正在运行的轴子搜寻实验,例如通过微波腔的ADMX、HAYSTACK 和用超导电路的DM Radio、ABRACADABRA 等。轴子质量分布范围是搜寻实验中极为关键的参数。根据以往的理论,轴子质量的可能范围跨度接近100个数量级,如果逐一搜寻,将耗费巨大的时间成本以及对探测技术要求极高,这为实验搜寻带来了极大的挑战。近期,国际上多项理论工作如高温晶格QCD、SMATH和轴子弦网络理论等研究了轴子质量分布范围,预言轴子质量有可能分布在10 μeV~1 meV,即著名的“轴子窗口”。这些工作引起了大家的广泛关注,然而由于实验技术限制,大部分实验室搜寻和天文学观测无法对轴子窗口内的轴子进行高灵敏搜寻。

图1:本工作的实验(A)与轴子诱导的中子-电子耦合强度界限图(B)
彭新华教授研究组将量子精密测量技术应用于轴子实验搜寻,原创提出“Sapphire” 研究计划(SpinAmplifier forParticlePHysIcsREsearch),核心是利用自旋量子放大器探测新粒子信号,为轴子研究提供了全新的“桌面式”超灵敏搜寻方法。在该工作中,研究人员制备了两个原子蒸气室,分别是惰性气体氙原子(xeon-129)和碱金属铷原子(rubidium-87),二者均通过激光泵浦技术实现接近了100%的自旋极化度。轴子可以作为力传播子(诺贝尓奖得主Wilczek于1984年理论预言),使得两团极化原子之间发生一种全新的极弱耦合作用,这等同于铷原子在氙原子上产生一个等效的磁场(如图1A所示)。轴子的质量决定了这一耦合作用的力程范围(即两个原子蒸气室的距离),因此为了搜寻特定质量范围的轴子,可以通过调节原子蒸气室之间的距离来实现。为了瞄准轴子窗口这一质量范围,需要将两个原子蒸气室之间的距离调节到厘米级别甚至更短。这对实验搜寻带来了两个巨大的挑战:(1)轴子等效磁场极其微弱,需要发展超灵敏的磁场探测技术;(2)由于两个原子蒸气室距离十分靠近,相互之间会产生经典的磁场干扰,导致轴子信号无法高灵敏识别。针对以上难题,该工作利用近期自主提出的自旋量子放大器作为轴子等效磁场的传感器[Nat. Phys. 17, 1402 (2021);PRL 128, 233201 (2022) ],实现了2个数量级的磁场放大,实验测量精度达到了0.1飞特斯拉(1飞特斯拉=10-15特斯拉),这意味着轴子产生的等效磁场至少比地磁场小1万亿倍。另一方面,研究人员为两个原子蒸气室专门研发了小型磁场屏蔽,将经典干扰磁场降低到0.003飞特斯拉水平,相比实验测量精度可以忽略不计。实验结果表明,在搜索范围内未发现轴子存在的证据,由此给出了轴子窗口内最强的中子-电子耦合界限,创造了新的国际最佳界限(如图1B)。
审稿人高度评价该工作是“a substantial improvement in sensitivity in a theoretically interesting mass region for axions”和“a clever new implementation"。这一成果展示了量子精密测量技术在粒子物理研究领域应用的新潜力,有望突破一系列现有的实验界限,从而激发对宇宙天文学、原子分子物理学等多个基础科学的广泛兴趣。
中科院微观磁共振重点实验室博士研究生王元泓和苏昊文为该文共同第一作者,江敏副研究员和彭新华教授为共同通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。
记者25日了解到,市场监管总局近日批准建立端度基准装置,该基准装置首次实现(0.1~1000)毫米一等量块的测量,填补国内空白,测量水平跻身国际第一梯队。端度是指物体两个面之间的长度。量块则是常用于复......
近日,中国计量科学研究院(以下简称“中国计量院”)(超)纯水电导率量值的校准与测量能力(CMC)通过国际评审,相关结果在国际计量局(BIPM)官网正式公布。此次公布标志着中国计量院(超)纯水电导率量值......
日前,中国科大信息科学技术学院电子工程与信息科学系在下丘脑胰高血糖素样肽(GLP-1)调控血糖代谢方面取得新进展。刘际研究员课题组揭示了一条肾上腺非依赖性的下丘脑-交感-肝脏轴通路调控应激血糖代谢的新......
当地时间17日,在欧洲核子研究中心(CERN)举行的研讨会上,紧凑型缪子螺线管探测器(CMS)合作组报告称,其在大型强子对撞机(LHC)上对W玻色子质量进行了迄今为止同类实验中最精确的测量,结果为80......
记者9日从北京航空航天大学李宜彬教授团队获悉,该团队首次利用自主研发的紫外-数字图像(UV-DIC)系统在超高温极端环境应变场测量领域实现了3000℃环境下的成功测量。相关研究成果近日发表于国际无损检......
将探头贴附固定在手腕上,仪器即可实时显示血压的连续波形与精准数据……6月6日,华中科技大学集成电路学院“声至压现”团队,展示了其创新研发出的新型血压监测仪器。该仪器能通过超声技术,实现无创、连续、精准......
......
激光粒度分析仪仪是根据光的散射原理测量粉颗粒大小的,是一种比较通用的粒度仪。其特点是测量的动态范围宽、测量速度快、操作方便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。对粒度均匀的粉体,比如磨料微粉,......
单光子的产生和检测已经从实验室研究逐步发展成为现代医学、量子处理、制造等领域的重要组成部分。单光子对于量子网络、单细胞的成像和测量、加密的量子“密钥”的分配以及纳米粒子的尺寸测定都很重要。为促进对该领......
中国工程院信息与电子工程学部、中国信息与电子工程科技发展战略研究中心9月25日在北京和香港同步发布《2023中国电子信息工程科技发展十四大技术挑战》。这十四大挑战涵盖数字领域、信息化、微电子光电子、光......