聚酰亚胺薄膜因其优异的力学性能、绝佳的热稳定性和突出的耐化学性,成为太空探测器“防护服”的优异材料。然而,与其他碳氢聚合物一样,聚酰亚胺材料在太空环境中也易受到原子氧的攻击,导致其物理和力学性能急剧下降。目前,针对这一问题尚无较好的解决手段。此外,宇宙射线辐射和空间碎片撞击等极端环境也对其稳定性提出了严峻考验。
近日,中国科学院士、中国科学技术大学教授俞书宏团队研发出一种新型的针对太空防护应用的聚酰亚胺-纳米云母复合膜材料。该材料采用独特的仿生设计,其力学性能和空间极端环境耐受性均得到显著提升。研究人员受到天然珍珠母的“砖-泥”层状结构启发,巧妙地设计构筑了具有双层类珍珠层结构的聚酰亚胺-云母纳米复合膜,使其顶层分布有更致密的云母纳米片,借助云母的本征属性和最为构筑单元的优点,在实现材料力学性能有效提升的同时,使其顶层对原子氧、紫外辐射和空间碎片等抵抗能力也得到明显提升。相关研究成果以Double-Layer Nacre-Inspired Polyimide-Mica Nanocomposite Films with Excellent Mechanical Stability for LEO Environmental Conditions为题,发表在Advanced Materials上。
科研人员将前期开发的具有优异力学性能、紫外屏蔽功能且可宏量制备的云母纳米片(Nat. Commun. ,2018, 9, 2974)作为构筑基元,与聚酰亚胺前驱体共组装得到聚酰亚胺-云母纳米复合膜,利用云母的优越本征特性来弥补聚酰亚胺的不足。区别以往仿珍珠层纳米复合膜的单层结构设计,本研究中,研究团队改变组分配比,借助喷涂与热固化联用法,构筑了具有双层类珍珠层结构的聚酰亚胺-云母纳米复合膜,使其顶层具有更致密的云母纳米片(图a-f)。这种设计策略实现了材料力学性能的有效提升,并使其上表面对原子氧、紫外辐射和空间碎片等具有更高的抵抗性能。
研究表明,该新型仿生复合膜的拉伸强度、杨氏模量和表面硬度分别为125 MPa、2.2 GPa和0.37 GPa,比纯聚酰亚胺膜分别高出45%、100%和68%(图g)。由于独特的双层类珍珠母结构及云母纳米片的固有性能优势,双层聚酰亚胺-云母复合膜表现出更优越的原子氧耐受性(侵蚀率≈0.17×10-24 cm-3 atoms-1),明显优于纯聚酰亚胺薄膜、单层类珍珠母结构的聚酰亚胺-云母复合膜以及以往报道的聚酰亚胺基复合材料。此外,其抗紫外线老化性(313 nm)和高温稳定性(380 oC)相比纯PI膜也得到明显提升。
这种具有双层类珍珠母结构的聚酰亚胺-云母纳米复合膜有望取代现有的聚酰亚胺基复合膜材料,作为一种有效的新型航天器外层防护材料,从而用于低轨道环境。该研究提出的独特双层仿珍珠母结构设计策略也为设计构筑其他高性能纳米复合材料提供了新思路。
研究工作得到国家自然科学基金创新研究群体资助项目/重点项目、中科院前沿科学重点研究计划、中央高校基本科研业务费专项基金、安徽省高校协同创新项目及中国科大同步辐射联合基金的资助。
论文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202105299

聚酰亚胺-纳米云母仿生复合膜制备过程示意图及其微观结构、机械性能和原子氧耐受性
盐湖卤水是获取锂资源的重要途径之一。卤水成分复杂,Mg2+和Li+水合离子半径相似,且镁锂分离难度大。膜分离技术可通过精细调控膜的孔径和表面化学性质,实现对特定离子的选择性分离。但是,膜的稳定性、耐腐......
◎本报记者陈曦具有高度规整结构的柱芳烃—MXene复合膜材料在抗生素污水净化中表现出优异的分离性能、较高的渗透通量、出色的抗污染能力和良好的稳定性,一定程度上解决了传统复合膜存在的“渗透性—选择性”权......
聚酰亚胺薄膜因其优异的力学性能、绝佳的热稳定性和突出的耐化学性,成为太空探测器“防护服”的优异材料。然而,与其他碳氢聚合物一样,聚酰亚胺材料在太空环境中也易受到原子氧的攻击,导致其物理和力学性能急剧下......
聚酰亚胺薄膜因其优异的力学性能、绝佳的热稳定性和突出的耐化学性,成为太空探测器“防护服”的优异材料。然而,与其他碳氢聚合物一样,聚酰亚胺材料在太空环境中也易受到原子氧的攻击,导致其物理和力学性能急剧下......
聚酰亚胺薄膜因其优异的力学性能、绝佳的热稳定性和突出的耐化学性,成为太空探测器“防护服”的优异材料。然而,与其他碳氢聚合物一样,聚酰亚胺材料在太空环境中也易受到原子氧的攻击,导致其物理和力学性能急剧下......
聚酰亚胺薄膜因其优异的力学性能、绝佳的热稳定性和突出的耐化学性,成为太空探测器“防护服”的优异材料。然而,与其他碳氢聚合物一样,聚酰亚胺材料在太空环境中也易受到原子氧的攻击,导致其物理和力学性能急剧下......
中科院青岛生物能源与过程研究所研究员江河清带领的膜分离与催化研究组开发出分离层厚度为145纳米,且具有特殊纳米条纹“图灵”结构的聚酰胺复合膜。相关成果近日发表于《美国化学会—应用材料与界面》。膜分离技......
近日,南开大学化学学院张振杰研究员、药物化学生物学国家重点实验室陈瑶研究员与爱尔兰利默里克大学的MichaelJ.Zaworotko教授合作,首次提出超交联金属有机笼(hyper-cross-link......
基于表面之间的机械互锁或分子吸引力的胶粘技术能够耐受液体环境。目前为止,研究人员开发了一系列干的或者湿的胶粘剂,包括:多级次蘑菇状结构或多孔结构、含有纳米颗粒的超分子结构、利用蛋白聚电解质的化学吸附剂......
从上世纪50年代到今天,中国高分子科学从无到有、从弱到强,这与中科院化学所的贡献密不可分。化学所是国内最早开展高分子科学与材料研究的科研单位之一。早在建所之初,高分子科学就成为化学所的主要学科方向之一......