一项新的研究可能解释了为何DNA而不是它古老的表亲---RNA---是遗传信息的主要储藏室。DNA双螺旋是容错性较大的分子,能够自我扭曲成不同的形状来消减遗传密码的基础构造元件---碱基A、G、C和T----所遭受的化学损伤。与此相反的是,当RNA以双螺旋形式存在时,它是非常刚硬和不易弯曲的,不能够容纳受损的碱基,因而它完全断裂了。相关研究结果于2016年8月1日在线发表在Nature Structural and Molecular Biology期刊上,论文标题为“m1A and m1G disrupt A-RNA structure through the intrinsic instability of Hoogsteen base pairs”。
这项研究突出强调了DNA双螺旋结构的动力学性质,其中这种结构在维持基因组稳定性和防止癌症和衰老等疾病中发挥着极为重要的作用。这一发现将有可能改写教科书上关于两种遗传物质的承载者---DNA和RNA---之间差异的记载。
论文共同通信作者、美国杜克大学医学院生物化学教授Hashim M. Al-Hashimi博士说,“这些简单而又漂亮的结构具有惊人的复杂性,在此之前,我们由于没有观察它们的工具,而不能够了解它们全新的维度或结构层。”
闻名于世的DNA双螺旋经常被绘制为螺旋梯:两条长链相互缠绕在一起,梯子的每一节都是一对碱基组成的。每个碱基含有碳环以及不同构象的氮原子、氧原子和氢原子。这些原子的分布允许G与C配对,A与T配对。
当Watson和Crick在1953年发布他们的DNA模型时,他们精准地预测这些碱基对将如何组装在一起。不过,其他的科学家们仍在努力提供证据支持这些所谓的Watson-Crick碱基对。此后在1959年,生物学家Karst Hoogsteen获得A-T碱基对的图片,它是一种略有倾斜的结构,一个碱基相对于另一个碱基旋转了180度。从那时以后,Watson-Crick碱基对和Hoogsteen碱基对仍然只在DNA图片中观察到。
5年前,Al-Hashimi和他的团队证实在DNA双螺旋中,碱基对不断地在Watson-Crick构象和Hoogsteen构象之间来回转换。Al-Hashimi说,当DNA被蛋白结合或因化学攻击遭受损伤时,Hoogsteen碱基配对通常会出现。当DNA从结合的蛋白中释放出来或修复它的损伤时,DNA返回到更加直接的Watson-Crick碱基配对。
Al-Hashimi说,“DNA似乎利用这些Hoogsteen碱基对增加它的结构多样性,产生不同的形状来实现细胞内更多的功能性。”
Al-Hashimi和他的团队想要知道当RNA形成双螺旋结构时,同样的情形是否也可能发生。鉴于碱基配对上的这些转换涉及原子水平上的分子运动,利用常规方法很难检测它们。因此,Al-Hashimi团队的研究生Huiqing Zhou采用一种复杂的被称作核磁共振弛豫分散(NMR relaxation dispersion)的成像技术可视化观察这些微小的变化。首先,她设计出两种双螺旋模型---一种由DNA制作出来的,另一种由RNA制作出来的。接着,她利用这种成像技术追踪按照Watson-Crick或Hoogsteen碱基配对规则配对形成上升螺旋中的单个碱基G和A的翻转。
之前的研究已表明在任何给定的时间,在DNA双螺旋中只有1%的碱基形成Hoogsteen碱基对。但是当Zhou研究了相对应的RNA双螺旋时,她发现完全没有可检测到的分子运动;碱基对全部都呆在原位,保持Watson-Crick构象。
研究人员想知道他们的RNA双螺旋模型是否是一种不同寻常的例外,为此,他们设计出一系列RNA分子,在多种条件下对它们进行测试,但是没有一种RNA分子扭曲成Hoogsteen构象。他们担心RNA分子可能实际上形成Hoogsteen碱基对,但是它们发生得如此之快以至于他们不能够当场捕捉到它们。Zhou将甲基基团添加到这些碱基的一个特异性位点上来阻断Watson-Crick碱基配对,因此[如果存在Hoogsteen构象的话,]RNA将会保持Hoogsteen构象。她吃惊地发现RNA的两条链并不是通过Hoogsteen碱基对连接在一起,而是在损伤位点附近断裂开。
Zhou说,“在DNA中,这种修饰(即添加甲基)是一种损伤,它能够很容易地通过翻转这个碱基和形成Hoogsteen碱基对加以消减。相反之下,这种同样的修饰严重地破坏RNA的双螺旋结构。”
Al-Hashimi团队认为RNA不形成Hoogsteen碱基对是因为它的双螺旋结构(A型)要比DNA的双螺旋结构(B型)压缩得更紧。因此,RNA不能够在不撞击另一个碱基的情形下翻转一个碱基,而这种撞击会让它的双螺旋结构断裂开。
Al-Hashimi说,“对双螺旋这么基础的东西,我们如此晚地发现这些基础性质是令人吃惊的。我们需要继续努力更加深入地理解生命的这些基础分子。”
神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......
国际知名学术期刊《自然》北京时间7月2日夜间在线发表一篇基因组学论文称,研究人员从上埃及Nuwayrat地区一个古王国墓葬中提取到一名古埃及个体的全基因组测序数据,这些数据分析可追溯至古埃及第三至第四......
在一项研究中,科学家对埃及一座墓葬中的一名古埃及人进行了全基因组测序。这些数据可追溯至古埃及第三至第四王朝,揭示了其与北非及中东地区,包括美索不达米亚古人群的亲缘关系,为早期埃及人的遗传多样性研究提供......
近年来,环状单链DNA(CssDNA)因其稳定性高、免疫原性弱、可编程性强,成为基因调控、细胞治疗等医学合成生物学领域很有潜力的分子工具之一。近期,中国科学院杭州医学研究所研究员宋杰团队针对此前开发的......
随着信息技术的飞速发展,传统存储方式已经逐渐无法满足大数据时代的需求。在此背景下,DNA信息存储技术应运而生,通过利用DNA分子存储数据,已经被视为未来大规模数据存储的潜力介质。每克DNA能够存储数百......
近日,我国科研人员在DNA存储领域取得新突破,研发了一种全新的DNA存储系统——HELIX,该系统专门用于存储生物医学数据,并成功实现了60MB的时空组学图像的存储与恢复。这一科研成果由天津大学应用数......
4月16日,深圳大学医学部基础医学院、卡尔森国际肿瘤中心教授朱卫国团队在《自然》杂志在线发表最新研究。他们揭示了连接组蛋白H1脱酰胺化修饰促进染色质开放和DNA损伤修复的机制,为肿瘤放化疗的精准靶标设......
中国环境监测总站开展水生生物DNA条形码及环境DNA分析测试公开征集工作,现向社会诚邀业界口碑良好并具有相关资质的单位参与征集。本项目资金来源:财政资金。一、项目概况:二、响应人资格要求:1.响应人须......
经过20多年的努力,科研人员成功地对6种现存猿类的基因组进行了完整测序,为研究人类进化提供了近距离视角,这被英国《自然》杂志称为“遗传学的一个里程碑”。123名来自多个国家和地区的科研人员组成的团队9......
以色列耶路撒冷希伯来大学近日发布公报说,该校研究人员绘制出一份较为全面的人类基因“隐秘开关”图谱,有助于推动遗传疾病等方面研究。人类遗传物质脱氧核糖核酸(DNA)上的基因可以被甲基化,这可以使相关基因......