发布时间:2019-04-17 10:16 原文链接: 人源甲状旁腺激素受体结构与功能研究取得重要进展

  国际学术期刊《科学》(Science)于4月12日以长文(Research Article;DOI: 10.1126/science.aav7942)形式发表了中国科学院上海药物研究所徐华强团队和王明伟团队、浙江大学基础医学院张岩团队以及美国匹兹堡大学医学院Jean-Pierre Vilardaga团队的合作研究成果——应用冷冻电镜技术精准(分辨率=3.0A)解析了1型人源甲状旁腺激素受体(Parathyroid hormone type 1 receptor, PTH1R)与Gs蛋白复合物的三维结构,揭示了其长效激活状态下的分子动力学机制,为创制治疗骨质疏松症、甲状旁腺功能减退症和恶病质等疾病的新药奠定了坚实的基础。

  甲状旁腺激素(Parathyroid hormone, PTH)是一种典型的内分泌激素,80多年前被确定为调节血钙水平的关键因子,对维持机体离子稳态和骨骼健全至关重要。PTH与在骨细胞和肾脏细胞中高表达的B类G蛋白偶联受体(G protein-coupled receptor, GPCR)家族成员PTH1R特异性结合后激活下游信号通路,进而调节体内的钙磷代谢。因此,PTH1R是公认的骨质疏松症治疗靶点,目前已有相关药物(PTH类似物如特立帕肽Teriparatide acetate)应用于临床。

  上述四个团队的科学家和研究生在徐华强和王明伟的分工协调下密切合作,刻苦攻关,先后突破了受体表达量低、蛋白稳定性差和复合物形成难等技术瓶颈,获得了长效配体LA-PTH与PTH1R及Gs蛋白结合的复合物,并解析了其三维结构。该项研究展现了LA-PTH与胞外及跨膜结构域结合的细节,揭示了受体激活的分子机制及其与G蛋白三聚体相互作用的界面。这是首次报道的全长激活状态1型人源甲状旁腺激素受体之立体结构和首个处于长时激活状态下的GPCR三维结构,同时也阐明了持续激活时细胞内环磷酸腺苷(cAMP)信号的转导机理。由于复合物结构的高分辨率(3.0埃),相关科学家还意外发现了许多有序排列的脂质和胆固醇分子围绕在受体跨膜区,这种现象可能具有稳定受体构象的效应。

  既往的研究推测内源性配体通过“两步模式”结合并激活B类GPCR:具有强亲和力的配体羧基端首先结合受体的胞外结构域,随后配体的氨基端插入跨膜结构域的疏水口袋。然而,人们对配体如何从受体上解离却知之甚少。甲状旁腺激素既能快速激活其受体又可迅速解离。相关科研人员借助长效激动剂延长了其在受体上的停留时间,随后通过精巧细致的三维分类技术捕捉到了配体从受体上解离的过程。构象灵活的受体胞外结构域结合配体后仍然保留了其动态的内在特性,并在不断运动中对展现螺旋结构的配体产生两种作用:(1)靠近配体产生应力促使其解螺旋和(2)远离配体减弱其亲和力。这两种效应综合导致配体羧基端首先从受体上解离。该项研究成果增进了人们对B类GPCR分子识别机制的认识。

  参加这项研究的合作单位还有美国文安德研究所(Van Andel Research Institute)、复旦大学和美国哈佛医学院,经费来自中科院、国家自然科学基金委员会、国家科学技术部、国家卫生健康委员会、美国国立卫生研究院、上海市科学技术委员会、复旦大学和中科院上海药物所融合创新基金、诺和诺德和中科院研究基金和中美两国多个人才资助专项(如中科院青年创新促进会)等。

图1:1型人源甲状旁腺激素受体信号转导复合物的冷冻电镜结构。左,冷冻电镜密度图;中,结构模型;右,高分辨率密度图显示脂质围绕受体形成带状结构,蓝色箭头示意胆固醇,透明盘状密度表示胶团微束。绿色,人源甲状旁腺激素受体(PTH1R);橙色,长效甲状旁腺激素(LA-PTH);黄色,G蛋白α亚基;青色,G蛋白β亚基;蓝色,G蛋白y亚基;灰色,纳米抗体。

图2:1型人源甲状旁腺激素受体活化的可能模型。多肽激动剂结合受体后诱导跨膜结构域6(TM6)外移,随后G蛋白与受体相互识别。在完全激活的1型人源甲状旁腺激素(PTH1R)复合物中,胞外结构域围绕多肽螺旋晃动,导致两者相对远离和多肽羧基端(C-ter)的去螺旋,进而两者完全解离。除了TM6为红色,受体标记为绿色。多肽为彩虹渐变色。


相关文章

天文学家首次揭示日冕环前所未有的精细结构

通过H-α波长(656.28纳米)拍摄的太阳耀斑的最高分辨率图像,可能会重塑我们对太阳磁场结构的理解,并改进空间天气预报。天文学家利用美国国家科学基金(NSF)的丹尼尔?K?井上太阳望远镜(DKIST......

研究人员系统鉴定出哺乳动物生精细胞RNA结合蛋白

南京医科大学教授郑科、郭雪江和副教授林明焰与中南大学教授、中信湘雅生殖与遗传专科医院副院长谭跃球等课题组合作,系统鉴定了哺乳动物生精细胞RNA结合蛋白、RNA结合结构域和非结构域元件,构建其男性不育相......

新研究!揭示现代大豆品种重要性状结构变异

近日,《自然—遗传学》(NatureGenetics)在线发表河北农业大学张彩英团队研究论文。该研究率先组装高产优质抗病现代品种“农大豆2号”高质量基因组,在基因组水平发掘现代大豆育成品种特有结构变异......

中科院生物物理研究所团队研究揭示染色质结构和折叠机制

中国科学院生物物理研究所朱平研究组和李国红研究组合作,揭示了连接组蛋白H5介导的核小体结合和染色质折叠和高级结构形成机制。相关论文近期发表于《细胞研究》。在真核生物中,基因组DNA被分层包装到细胞核内......

致密核物质性质理论研究新进展

近期,中国科学院近代物理研究所核物理中心研究员雍高产在核物质相结构与中子星“超子谜团”研究方面取得进展。相关研究成果发表在《物理快报B》(PhysicsLettersB)上。核物质相结构的探测研究是当......

晶态多孔有机框架的设计合成研究取得进展

近日,西北农林科技大学化学与药学院刘波副教授提出了一种基于动态B-O、B←N和氢键组装的晶态多孔有机框架的新概念,为高效制备和实际应用可加工和可回收再生的多孔框架材料提供重要的理论依据,该研究成果发表......

科学家揭示番茄闭花授粉形成机制

福建农林大学教授吴双团队首次解析了番茄通过形成特殊表皮毛,改变花的结构,进而改变授粉方式的分子机制。该研究为未来改造植物授粉方式,增加结实率和提高植物的逆境适应力,以及未来转基因作物的安全控制提供了重......

响应设备更新政策|半导体制造工艺、结构与表征解决方案

半导体制造工艺电动汽车等高新技术领域对高效动力转换的需求与日俱增,碳化硅与氮化镓材料扮演关键性角色,有效降低能耗并提升动力转换效率。牛津通过原子层沉积(ALD)与原子层刻蚀(ALE)技术优化了器件工艺......

Nature:科学家成功揭示神经递质转运蛋白的精细化结构

神经元能通过一种称之为神经递质的化学信号来彼此交流沟通,近日,一篇发表在国际杂志Nature上题为“Mechanismsofneurotransmittertransportanddruginhibi......

激光粒度仪原理、结构及可测样品类型

激光粒度仪是利用颗粒对光的散射(衍射)现象测量颗粒大小的。即光在行进过程中遇到颗粒(障碍物)时,会有一部分偏离原来的传播方向,颗粒尺寸越小,偏离量越大;颗粒尺寸越大,偏离量越小.散射现象可用严格的电磁......