图片来源于网络

  近日,美国生物合成领域专家弗洛伊德•罗穆斯伯格(Floyd Romesberg)在《自然》杂志发表了一项新成果。他首次用合成的X-Y碱基对和相应的氨基酸,在实验室内创造出了含ATGCXY六种碱基的全新生命体。这一成果打破了自然界的碱基束缚,创造出自然界中不存在的全新生命体。那么,这是否意味着人类开启了可以按照自己的需求打造生命体的全新时代?对此,专家有不同看法。

  “突破第一关”

  “整个研究很有深度和广度,这个研究团队在这个方面作了20多年的研究,很系统。” 法国巴黎第六大学生物所计算定量生物系独立课题组组长叶世欣告诉《中国科学报》记者。

  在基因中加入两个碱基,相当于将遗传密码子得到了扩充。也就是说,过去自然系统中的64个密码子,“在理论上,被扩充到了216个”。

  密码子通过编码形成氨基酸,研究已经发现自然系统中的64个密码子,形成20种氨基酸,并最终为地球生命的形成提供所需的蛋白质。

  64个密码子和20种氨基酸的组合形成了地球上这么多生命,如果216种密码子与其可能形成的氨基酸进行组合,理论上说,相当于“让细菌利用更多氨基酸来制作蛋白质”。

  一位基因研究专家告诉《中国科学报》记者,能够拓展遗传密码本身具有重大的理论意义。人工氨基酸改造研究已有多年历史,但由于技术瓶颈和应用推广等问题一直较“小众”。而这一成果则让科学家感觉“看来是突破第一关了”。

  基因治疗新手段?

  新的合成基因密码的出现让人们对基因治疗的未来有了新的期待。然而,合成的新基因密码是否会成为新的基因工具,从而为基因治疗提供全新手段?对此,科学家认为目前并不乐观。

  “从完全合成的基因到将其用于疾病治疗有很大距离。” 温州医科大学附属眼视光医院研究员谷峰告诉《中国科学报》记者,自然界已有的天然工具用于基因治疗时,目前都只能在很小的范围内转化,如从细菌到人体转化的实现就非常困难。

  谷峰介绍,基因剪刀从细菌移植到哺乳动物细胞,常常存在效率不高、靶向性不够强甚至脱靶的问题。因而,让完全合成的基因发挥天然系统内的基因工具都难以完成的任务,科学家对此表示怀疑。

  “外来密码子效率有多高”“如何达到生产的标准”“如何解决靶向性问题”,这些都是研究人员关心的问题。

  “这一系统能否移植到动物上,如果动物能够实现就很有意思。”谷峰称,“从大肠杆菌到动物是一个飞跃。”但它需要对这一系统做进一步的优化,才有可能把外来的基因放到希望的地方去,达到“指哪儿打哪儿”的效果。

  效率是最大瓶颈

  谷峰所担心的效率问题,也是叶世欣关注的焦点。

  “问题是,现在的效率会很低,毕竟不是天然的密码子,所以虽然有更多的可能性,但在实施方面会有更多困难。”叶世欣所说的效率,是与自然系统中识别天然碱基的效率相对而言。

  以非常容易生产的绿色荧光蛋白(GFP)为例,应用人工合成的这种全新基因密码生产GFP蛋白质,其效率是内源密码编辑蛋白质效率的10%,甚至更低。

  正因为这样,科学家才对该技术的应用前景十分冷静,因为它仍是“十分基础的研究”。但这并不能否认该成果对于其他相关研究所具有的建设性意义。

  在叶世欣看来,一方面,研究对合成生物学是一个巨大推动,有望让细菌体合成有更多化学性质的蛋白质;另一方面,在基础研究中,这一探索也将帮助科学家了解遗传密码的起源。

  “遗传密码最早是从很简单的碱基、氨基酸开始,扩充过程中会吸收新的元素,通过倒推这样的研究就会帮助我们探讨遗传密码的起源问题。”她说。

  有媒体报道称,通过这样的技术,或许科幻电影中的“金刚狼”等生命体未来会成为现实中存在的生命。

  不过,专家表示,当前该研究是在细菌系统内进行,并不存在人们所担忧的会影响人类遗传密码等伦理问题。“将来如果把这种想法放入哺乳细胞中,其伦理问题就是可以探讨的话题了。”叶世欣说。


相关文章

方显杨研究组与合作者共同开发了一种新型活细胞DNA成像技术

三维基因组互作与表观遗传修饰是基因表达调控的重要因素,其动态变化与细胞生长发育及癌症等疾病的发生发展密切相关。解析染色质在活细胞内的时空动态,是理解基因调控机制的重要科学问题。现有基于CRISPR-C......

胚胎“体检”狙击遗传肿瘤10年诞生百名“无癌宝宝”

11月1日,在长沙举行的第五届湖南省抗癌协会家族遗传性肿瘤专业委员会学术年会上,中信湘雅生殖与遗传专科医院(下称中信湘雅)首席科学家卢光琇宣布,该院第100位通过胚胎植入前遗传学检测(PGT)技术阻断......

我国科研人员找到导致反复“试管”失败的“基因钥匙”

10月16日,记者从中信湘雅生殖与遗传专科医院获悉,该院研究员林戈、副研究员郑伟团队,联合山东大学、上海交通大学医学院等单位的科研团队开展合作攻关,系统揭示了卵子与早期胚胎质量问题导致女性反复“试管”......

衰老如何改变我们的基因

衰老对身体产生的可见影响有时与基因活动的无形变化有关。DNA甲基化的表观遗传过程会随着年龄增长而变得不再精确,造成基因表达的变化。而这种变化与随着年龄增长而出现的器官功能衰退和疾病易感性增加有关。如今......

为何有人衰老更快?揭秘背后的400个基因

有些人比同龄人更显年轻,而有些人看着更显老;有些人年逾九旬仍身心康健,而另一些人早在数十年前就饱受糖尿病、阿尔茨海默病或行动障碍的困扰;有些人能轻松应对严重摔伤或流感侵袭,而有些人一旦住院就再难康复。......

科学家发现玉米耐热关键基因

近日,西北农林科技大学玉米生物学与遗传育种团队联合华中农业大学玉米团队在《植物生理学研究》发表论文。研究初步揭示了ZmGBF1-ZmATG8c模块通过自噬途径调控玉米耐热性的分子机制。随着全球气温持续......

大肠杆菌密码子数从64减至57,为新药和新材料研发开辟新途径

英国剑桥分子生物学实验室科学家在最新一期《科学》杂志发表最新成果称,他们将大肠杆菌基因组包含的64个密码子缩减为57个,并将这一新菌株命名为Syn57。这项研究犹如为生命体“瘦身”,有望为研发抗病毒药......

降本提效!我团队研制出系列牛用基因芯片

记者21日从国家乳业技术创新中心获悉,该中心技术研发团队成功研制出奶牛种用胚胎基因组遗传评估芯片和“高产、抗病、长生产期”功能强化基因组预测芯片。该系列基因芯片具有完全自主知识产权,填补了我国基因芯片......

新研究:阻断或抑制一种特殊基因可选择性杀伤癌细胞

国际期刊《内分泌学前沿》日前刊登的一项新研究揭示,一种特殊基因对肠道吸收维生素D及其后续代谢过程至关重要,阻断或抑制该基因能够选择性抑制癌细胞生长。这一发现在癌症治疗等精准医学领域具有广阔应用前景。维......

我国科学家发现大豆种子油蛋比调控关键基因

记者从安徽农业大学获悉,该校王晓波教授团队联合中国农业科学院作物科学研究所邱丽娟、李英慧研究员团队,解析了关键基因对大豆种子油脂和蛋白比例(油蛋比)的调控机制,为高油或高蛋白大豆品种选育提供了新方向。......