发布时间:2022-11-24 11:33 原文链接: 信号与系统冲激函数的性质

1、筛选性质

如果信号x(t)是一个在t=t₀处连续的普通函数,则有

上式表明,信号x(t)与冲激函数相乘,筛选出连续时间信号x(t)在t=t₀时的函数值x(t₀),可以理解为冲激函数在t=t₀时刻对函数x(t)的一瞬间的作用,其值是冲激函数和x(t₀)相乘的结果,瞬间趋于无穷大。

2、取样性质

如果信号x(t)是一个在t=t₀处连续的普通函数,则有

冲激信号的取样特性表明,一个连续时间信号x(t)与冲激函数相乘,并在时间域

上积分,其结果为信号x(t)在t=t₀时的函数值x(t₀) 。该式可以理解为冲激函数作用于函数x(t),趋于稳态时最终作用的结果,即得到信号x(t)在t₀时刻的值x(t₀)。

3、导数性质

冲激函数的导数性质如下:

其证明如下:

4、尺度变换

冲激函数的尺度变换性质如下:

其推论明如下:

(1)

(2)

(3)当a=-1时 

(4)

为偶函数。

(5)

为奇函数