发布时间:2022-09-24 21:44 原文链接: 光学调控等离子激元激子相互作用研究获进展

近日,华南师范大学信息光电子科技学院教授兰胜课题组在光学调控介电-金属复合纳米腔与单层二维材料强耦合的研究中取得重要进展。相关研究发表于ACS Nano。博士生刘诗媚和硕士毕业生邓富(现为香港科技大学博士生)为该论文共同第一作者,兰胜教授为通讯作者,华南师范大学为第一完成单位。

等离子激元-激子的强耦合在纳米光子学、等离子激元光子学和量子电动力学中具有潜在的应用前景。介电-金属复合纳米腔具有较强的电场增强,较小的模式体积和较小的欧姆损耗,而二维材料通常具有很强的吸收和较大的电偶极距。等离子激元-激子耦合强度的动态调控(特别是利用光学方法)目前仍然是该研究方向的一大挑战。

在该项研究中,兰胜课题组创新性地提出并验证了利用连续激光激发介电-二维材料-金属复合纳米腔的方法来引入和调控等离子激元-激子-三子(plasmon?exciton?trion)的耦合强度。该纳米腔由硅(Si)纳米颗粒和金(Au)膜组成,其中嵌入了单层二硫化钨(WS2)。他们利用复合纳米腔在激光激发下的散射光谱和荧光光谱来表征由不同尺寸Si纳米颗粒构建的Si/WS2/Au复合纳米腔中等离子激元与激子和三子之间的耦合强度。通过488-nm激光照射将激子和三子注入单层WS2,从而引入并调控等离子激元-激子和等离子激元-三子的耦合强度。

该研究的创新成果包括:一是,纳米腔中激子和三子的发射强度相对于参考单层WS2的发射强度可以通过耦合强度的变化来调控;二是,通过简单地增加激光功率可以调控等离子激元与激子(三子)之间的耦合从弱耦合进入强耦合,并且在Si/WS2/Au复合纳米腔的散射光谱中可以清晰地观察到;三是,激子和三子之间的能量交换进一步证明了激光诱导的等离子激元-激子-三子的耦合。

该研究成果证实了光学调控等离子激元-激子相互作用的可能性,为介电-金属复合纳米腔在纳米尺度等离子激元器件中的实际应用奠定了基础。

相关文章

我国学者与海外合作者在深时不同极端气候的触发机制和环境响应方面取得进展

图(A)晚古生代石炭纪早期海相碳酸盐碳、钡和铀同位素组成;(B)古新世-始新世极热事件前后海相碳酸盐和碎屑岩碳、锂、铀同位素及有孔虫氮同位素组成深时极端气候的驱动机制及其对全球环境的影响能够为深入了解......

金属材料可实现“既强又韧”

近日,西安交通大学金属材料强度全国重点实验室教授马恩在《科学进展》发表焦点文章。该文论证了金属材料在强化的同时保持拉伸塑性、实现高强度与大塑性共存的可行性。金属材料的屈服强度和拉伸塑性对于工程应用都很......

为化学创造“新空间”的金属有机框架——2025年诺贝尔化学奖成果解读

瑞典皇家科学院8日在宣布2025年诺贝尔化学奖得主时,用一句富有诗意的话总结了获奖者的贡献:“他们为化学创造了新空间。”这一荣誉属于日本京都大学的北川进、澳大利亚墨尔本大学的理查德·罗布森和美国加利福......

我国学者在纳米多特异性抗体研究中取得进展

图纳米多特异性抗体设计策略。(a)基于融合蛋白复合型“纳米适配子”构筑纳米多特异性抗体;(b)纳米多特异性抗体的抗肿瘤机制在国家自然科学基金项目(批准号:52130301、32430059、32071......

研究通过纳米限域结晶构筑高性能呋喃聚酯

当前,开发可再生的生物基材料是替代传统塑料、推动可持续发展的关键路径之一。作为颇具潜力的生物基平台化合物之一,2,5-呋喃二甲酸基聚酯却受困于强度-韧性-阻隔性的“性能三角”权衡难题。中国科学院宁波材......

纳米粒子减缓乳腺癌发展机理揭示

巴西奥斯瓦尔多克鲁兹基金会研究人员发现了纳米粒子有效抑制癌细胞发展的相关机理,即纳米粒子能有效抑制癌细胞增殖,也能阻止肿瘤向其他器官转移。相关论文发表在最新一期《癌症纳米技术》上。研究人员将患有乳腺癌......

第七届纳米能源与纳米系统国际会议开幕

6月28日,2025中关村论坛系列活动——第七届纳米能源与纳米系统国际会议(NENS2025),在北京开幕。大会由中国科学院北京纳米能源与系统研究所主办,聚焦“纳米能源与纳米系统前沿与应用”这一主题,......

纳米“快递”能送药直达肺部

由美国俄勒冈州立大学、俄勒冈健康与科学大学和芬兰赫尔辛基大学组成的国际团队,近日研发出一种创新性的纳米粒子载体,能够像精准导航的无人机,将基因药物直接投送至肺部病灶。这项同时发表于《自然·通讯》杂志和......

圆满落幕|2025第二届中国(江西)国际有色金属暨冶金工业展览会

3月30日,为期3天的2025第二届中国(江西)国际有色金属暨冶金工业展览会,与同期举办的2025中国(江西)国际绿色矿业博览会、2025中国(江西)国际铸造压铸、锻造、热处理工业炉展览会,在南昌绿地......

重大突破!我国科学家成功提升金属材料在长期使用中的抗疲劳能力

金属材料在长期使用过程中产生的疲劳失效是威胁重大工程安全的隐形杀手。经过多年攻关,我国科学家日前破解了这一难题,成功让金属材料在保持高强度、高塑性的同时,还大幅提升了抗疲劳能力。这一成果北京时间4日凌......