据新一期《自然·通讯》杂志报道,美国麻省理工学院团队展示的全新超导电路设计,有望使量子处理器速度提高10倍。这是量子系统中迄今为止所能实现的最强非线性光物质耦合,此举可让未来的量子计算机运行更快、更稳定,并向实用化迈进一步。
量子计算机潜力巨大,未来能快速模拟新材料,或者极大提高人工智能的学习效率。然而,这些应用实现的前提是量子计算机能以极快速度完成复杂运算,同时迅速读出计算结果。而这一测量过程的效率,即读取效率,取决于光子与人工原子(量子计算机中常用于存储信息的物质单元)之间的耦合强度。
此次团队采用的超导电路设计,其非线性光物质耦合强度比之前演示的高出一个数量级,朝着实现可在几纳秒内完成的量子运算和读取迈出了关键一步。
团队在2019年开始研发一种专门的光子探测器,以增强量子信息处理能力。其间他们发明了一种名为“四分量耦合器”的新型量子耦合器。这个装置像是一个“翻译器”,能促进量子比特之间高效交换信息。其工作原理是:当人们向耦合器注入电流时,它能增强量子比特和光信号之间的相互作用,产生非常强的非线性耦合。简而言之,就是让光和物质之间的“对话”更加高效、精准。
在实验中,团队将这种耦合器连接到芯片上的两个超导量子比特,其中一个量子比特转变为谐振器,相当于一个读取器,用来检测量子比特的状态。另一个被当作人工原子,用来存储量子信息,其中信息以光子形式传输。当微波光照射到这个系统上时,谐振器会根据量子比特是“0”还是“1”而发生频率变化。研究人员通过监测这种变化就能判断比特的状态。
结果,四分量耦合器在量子比特和谐振器之间产生的非线性光物质耦合强度,比之前实现的强度高出一个数量级。这不仅加快了读取速度,还减少了误差,使得量子比特能在寿命内完成更多次计算与纠错操作。
从长远来看,这项研究有助于科学家构建容错量子计算机,这对于实际的、大规模的量子计算至关重要。
据最新一期《科学》杂志报道,英国牛津大学和爱尔兰科克大学等机构合作,开发出一种强大的新技术,首次实验证实天然材料碲化铀(UTe2)具备内在拓扑超导性。这为大规模、容错型量子计算机的核心材料筛选提供了关......
加拿大量子计算初创公司Nord Quantique宣布开发出一种基于多模式编码的玻色子量子比特技术,为大幅减少量子纠错所需的物理量子比特数量提供了可行路径。这标志着行业向实现大规模、低能耗量......
据新一期《自然·通讯》杂志报道,美国麻省理工学院团队展示的全新超导电路设计,有望使量子处理器速度提高10倍。这是量子系统中迄今为止所能实现的最强非线性光物质耦合,此举可让未来的量子计算机运行更快、更稳......
据新一期《自然·通讯》杂志报道,美国麻省理工学院团队展示的全新超导电路设计,有望使量子处理器速度提高10倍。这是量子系统中迄今为止所能实现的最强非线性光物质耦合,此举可让未来的量子计算机运行更快、更稳......
记者6日从安徽省量子计算工程研究中心获悉,本源量子计算科技(合肥)股份有限公司(下称“本源量子”)正式发布支持超过500个量子比特的中国第四代自主量子计算测控系统“本源天机4.0”。量子计算测控系统是......
图祖冲之三号芯片示意图在国家自然科学基金项目(批准号:92476203)等资助下,中国科学技术大学潘建伟教授团队及其合作者在超导体系量子计算方面取得了新进展。相关成果以“以基于105量子比特的“祖冲之......
中国科学技术大学潘建伟、朱晓波、彭承志等,与上海量子科学研究中心、河南省量子信息与量子密码重点实验室、中国计量科学研究院、济南量子技术研究院、西安电子科技大学微电子学院以及中国科学院理论物理研究所等单......
据新华社报道,近期,中国科学技术大学潘建伟、朱晓波、彭承志等成功构建105比特超导量子计算原型机“祖冲之三号”,处理量子随机线路采样问题的速度比目前国际最快的超级计算机快千万亿倍,再次打破超导体系量子......
美国亚马逊云科技量子计算中心团队在25日《自然》杂志的一篇论文中,演示了容错量子计算的新突破:一种对硬件需求更低的量子纠错系统。这一系统使用了“猫量子比特”(cat qubits),其创新设......
近日,量子计算产业链长企业北京玻色量子科技有限公司(以下简称“玻色量子”)完成A+轮融资。此次融资由北工投资管理的北京市级政府引导基金——北京高精尖产业发展投资基金(有限合伙)(简称“高精尖实体化基金......