染色质重塑chromatin remodeling :基因表达的复制和重组等过程中,染色质的包装状态、核小体中组蛋白以及对应DNA分子会发生改变的分子机理。
DNA 复制、转录、修复、重组在染色质水平发生,这些过程中,染色质重塑可导致核小体位置和结构的变化,引起染色质变化。ATP 依赖的染色质重塑因子可重新定位核小体,改变核小体结构,共价修饰组蛋白。重塑包括多种变化,一般指染色质特定区域对核酶稳定性的变化。人们发现体内染色质结构重塑存在于基因启动子中,转录因子TF 以及染色质重塑因子与启动子上特定位点结合,引起特定核小体位置的改变(滑动),或核小体三维结构的改变,或二者兼有,它们都能改变染色质对核酶的敏感性。
关于重塑因子调节基因表达机制的假设有两种:
机制1:1 个转录因子独立地与核小体DNA 结合(DNA 可以是核小体或核小体之间的),然后,这个转录因子再结合1 个重塑因子,导致附近核小体结构发生稳定性的变化,又导致其他转录因子的结合,这是一个级联反应的过程——重建;
机制2: 由重塑因子首先独立地与核小体结合,不改变其结构,但使其松动并发生滑动,这将导致转录因子的结合,从而使新形成的无核小体的区域稳定——滑动。
记者近日获悉,中国专家团队首次揭示了一种在哺乳动物细胞中控制染色质分区以及近着丝粒异染色质形成、维持和稳态遗传的新机制。北京时间15日深夜,由华东师范大学翁杰敏教授团队与中国科学院生物化学与细胞生物学......
华东师范大学教授翁杰敏团队与中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员陈德桂团队合作,揭示了哺乳动物细胞近着丝粒异染色质形成、维持和稳定遗传的新机制,对异染色质调控机制有了......
染色质是真核细胞中DNA包装和基因表达调控的核心结构。核小体作为染色质的基本单位,与各种蛋白质的相互作用决定了基因表达的精确调控。理解核小体结合蛋白的结构特征和相互作用机制,对揭示表观遗传调控、疾病发......
法国斯特拉斯堡大学AdamBen-Shem团队近期取得重要工作进展。他们报道了人TIP60-C组蛋白交换和乙酰转移酶复合物的结构。相关论文于2024年9月11日发表于国际顶尖学术期刊《自然》杂志上。据......
中国科学院生物物理研究所朱平研究组和李国红研究组合作,揭示了连接组蛋白H5介导的核小体结合和染色质折叠和高级结构形成机制。相关论文近期发表于《细胞研究》。在真核生物中,基因组DNA被分层包装到细胞核内......
9月13日,中国科学院生物物理研究所朱平研究组在国际期刊《细胞报告》(CellReports)在线发表论文,利用冷冻电子断层三维成像方法,揭示了体外组装和体内染色质纤维一种普遍存在的双螺旋折叠模式。在......
调控基因组元件的高阶三维(3D)组织为基因调控提供了拓扑基础,但尚不清楚哺乳动物基因组中的多个调控元件如何在单个细胞内相互作用。2023年8月28日,北京大学汤富酬团队在NatureMethods(I......
在真核细胞分裂过程中,染色质结构的重新建立对于维持基因组完整性和表观遗传信息传递至关重要。DNA复制一方面破坏母链DNA的亲本核小体,另一方面新生核小体必须在DNA子链上重建。染色质组装因子CAF-1......
由于小鼠的易实验性和强遗传性,其一直是生物医学研究中使用广泛的动物模型。但是,胚胎学研究发现,小鼠早期发育的许多方面与其他哺乳动物不同,从而使有关人类发育的推论复杂化。英国剑桥大学等研究团队合作构建了......
碱基编辑器是基于CRISPR/Cas9发展的新一代基因组编辑技术,可诱导单个碱基的突变,而鲜有关于特异性介导A-to-G和C-to-G双突变的碱基编辑工具的研究。此外,关于碱基编辑系统与染色质环境之间......