发布时间:2023-06-21 16:38 原文链接: 力学所等研发出超高强塑性钨高熵合金

钨合金具有高密度、高强高硬、抗辐照等优异性能。随着高技术领域的迅速发展以及服役环境的复杂和极端化,对钨合金的强韧塑性等性能提出了越来越苛刻的要求,突破材料固有的强度-塑性互斥(trade-off),发展强度2GPa量级同时兼具良好拉伸塑性的超高强钨合金是当前亟待解决的挑战性难题。 

中国科学院力学研究所戴兰宏研究团队前期工作研发了一种具有剪切自锐(self-sharpening)特性的钨高熵合金,首次在铸态钨合金中实现了自锐性的突破,使高速穿甲侵彻能力获得显著提高。近期,戴兰宏团队联合美国加利福尼亚大学伯克利分校、北京航空航天大学、香港理工大学和香港城市大学,在超高强钨高熵合金的研究中又取得重要进展。科研人员提出了逐级可控有序纳米沉淀强韧化的新策略。该策略在高温(900℃)和中温(650℃)分级时效,实现了纳米片层状δ相和纳米颗粒状γ"相差异性可控的双共格纳米沉淀相析出(图1、2),使所制备钨高熵合金材料具有2.15GPa的超高室温强度和15%的拉伸塑性(图3)。同时,该钨高熵合金在800℃高温环境下仍可保持1GPa以上的高屈服强度(图4)。与已报道相关钨合金和难熔高熵合金相比,所研制钨高熵合金强塑性目前在国际上处于最优水平。研究人员对不同拉伸变形阶段的微观结构进行系统表征分析,揭示了位错滑移切过两种共格沉淀相并保持完美的共格结构,实现了材料晶体结构“切过而不断”,这是该合金材料具有超高强塑性的主要原因。位错切过δ片层沉淀后,片层出现了显著的局部高应变,同时保持了晶体结构连续(图5),有效释放由位错塞积产生的应力集中,避免了裂纹提前萌生诱致的脆性破坏。位错切过共格γ"沉淀后,发生共格强化和有序强化,使材料强度进一步提高(图6)。两种不同形态纳米沉淀相的协同强韧化,实现了该合金强度和塑性的同步提升。逐级可控的沉淀结构实现了钨高熵合金的超高强塑性,为高性能先进合金材料研发提供了新思路。 

相关研究成果以Ultra-strong tungsten refractory high entropy alloy via stepwise controllable coherent nanoprecipitations为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金重大项目“无序合金的塑性流动与强韧化机理”、国家自然科学基金基础科学中心项目“非线性力学的多尺度问题”和中国科学院战略性先导科技专项(B类)等的支持。 

论文链接