神经系统(CNS)作为一个高度复杂、精密有序的结构,从早期胚胎发育的开始,就伴随着非神经组织的驻留。其中,小胶质细胞(Microglia)作为神经系统的固有免疫细胞,来源于卵黄囊中的原始巨噬细胞,并在胚胎大脑发育形成血管时侵入大脑皮层内,在神经前体细胞周围聚集形成一个特殊的微环境,并构建出独特的免疫状态。越来越多的证据表明小胶质细胞通过直接相互作用或间接分泌细胞因子的方式调控神经发生(Neurogenesis)、突触修剪等过程,对神经发育过程中的网络构建发挥着重要功能。尽管小胶质细胞在脑发育过程中扮演着越来越重要的作用,但是仍然缺乏系统性的关于胚胎期小胶质细胞对于神经前体细胞命运决定的调控机制的研究。
7月20日,中国科学院动物研究所研究员焦建伟团队在Molecular Psychiatry上发表题为Microglia homeostasis mediated by epigenetic ARID1A regulates neural progenitor cells response and leads to autism-like behaviors的研究论文。该研究揭示了表观遗传因素ARID1A导致胚胎期小胶质细胞稳态失衡,造成神经前体细胞所处微环境紊乱,进而损害神经发育的进程并导致自闭样行为的调控机制。
研究人员发现在胚胎期大脑神经发生过程中,小胶质细胞的稳态与神经前体细胞的维持和命运决定存在着重要的相互调控作用。其中,ARID1A作为SWI/SNF染色质重塑复合体的核心亚基在小胶质细胞稳态重塑方面起着重要的调控作用。ARID1A缺失破坏了小胶质细胞中H3K9me3的表观修饰,导致小胶细胞稳态的失衡。随后失衡的小胶质细胞进一步通过改变神经前体细胞所处的微环境,损害了神经发生的过程,导致神经前体细胞库的耗竭和产生神经元的减少,进而导致成年小鼠产生了自闭样的行为缺陷。研究人员利用RNA-seq和CUT&Tag等基因组学方法,筛选出介导小胶质细胞与神经前体细胞“cross-talk”的分泌因子。小胶质细胞释放的PRG3因子通过驱动神经前体细胞内的Wnt/β-catenin信号通路及其下游级联反应,导致了神经发生的紊乱。
该研究揭示了胚胎期神经发育过程之中,小胶质细胞的稳态与神经前体细胞相互作用的分子机理,将小胶质细胞作为胚胎神经发育内环境稳态调控的桥梁,在分子水平、细胞层面、双系统之间等多个层次,研究大脑皮层发育过程中不同系统之间体内微环境中细胞、分子的组成和网络结构,并深入探讨神经前体细胞在驻留免疫细胞环境下的自我更新和分化调控,为临床治疗提供了新的治疗方法和理论参考。
相关研究工作获得科学技术部、国家自然科学基金委、中科院战略性先导科技专项等项目的资助。

动物所揭示胚胎期小胶质细胞稳态调控神经发育的新机制
5月26日,京津冀国家技术创新中心发布《国家重点研发计划颠覆性技术创新重点专项2025年度细胞与基因治疗领域项目申报指引》。该项目面向基础性、战略性重大场景,聚焦细胞与基因治疗领域关键核心技术环节,形......
4月30日,神舟十九号飞船携空间站第八批空间科学实验样品顺利返回地球。其中,中国科学院深圳先进技术研究院(以下简称深圳先进院)医药所能量代谢与生殖研究中心雷晓华研究员团队的“太空微重力环境下人多能干细......
人工智能正以前所未有的速度重塑细胞生物学研究。从高分辨率成像到细胞行为动态分析,AI技术不仅提升了数据处理的精度与效率,同时随着AI与生物学、医学等学科的深度融合,其在细胞研究中的应用正不断突破边界,......
上海市科学技术委员会关于发布2025年度关键技术研发计划“细胞与基因治疗”项目申报指南的通知沪科指南〔2025〕5号各有关单位:为深入实施创新驱动发展战略,加快建设具有全球影响力的科技创新中心,根据《......
描述疾病相关细胞的空间分布对于理解疾病病理学至关重要。近日,西湖大学杨剑团队在Nature在线发表题为“Spatiallyresolvedmappingofcellsassociatedwithhum......
湾区再添"国之重器"3月25日,总投资逾30亿元的人类细胞谱系大科学研究设施在广州国际生物岛正式破土动工。作为国家"十四五"规划布局的重大科技基础设施,该项目将......
日本大阪大学团队发现,接头蛋白复合物2α1亚基(AP2A1)能让细胞在年轻和衰老这两种状态之间切换,这意味着在逆转细胞衰老研究方面迈出了关键一步。相关论文发表于近期《细胞信号》杂志。随着年龄增长,衰老......
最近,《神经病学年鉴》(AnnalsofNeurology)发表的一项研究使用多模式测试方法,揭示了目前被认为是正常的维生素B12水平与神经损伤或功能障碍标志物之间的关联。维生素B12(也称为钴胺素)......
当小鼠摄入足够食物时,小鼠大脑中的神经元会告诉它们停止进食——人类可能也有同样的细胞,所以我们有朝一日可能会操纵这些细胞来帮助治疗肥胖症。相关研究成果发表于《细胞》。“我们试图解答的主要问题是大脑如何......
中国科学院广州生物医药与健康研究院副研究员孙益嵘团队与美国加州大学洛杉矶分校的研究人员合作,首次证实了干扰素基因刺激因子(STING)蛋白可以通过一个全新信号通路(PARP1-PAR-STING)直接......