烯烃的卤化反应是合成化学中最重要的基元反应之一,为烯烃的功能化提供了非常简便有效的途径。烯烃的不对称卤化反应则可在双键上同时引入两个手性中心,产物中的卤原子可以进一步发生多种转化,如立体选择性的取代反应等,方便快捷的构建丰富的合成中间体。然而,由于烯烃的不对称卤化反应极具难度,目前报道的催化体系大多局限于不对称卤内酯化反应,发展新型的催化体系和新型的不对称卤化反应具有重要的科学价值。
在科技部、国家自然科学基金委、中国科学院的支持下,中科院化学研究所分子识别与功能院重点实验室的科研人员经过一系列的探索性研究,发现了手性膦-Sc(OTf)3催化的烯烃不对称溴环化反应可以生成光活性噁唑啉酮衍生物,取得优异的对映选择性。反应操作简便,催化剂用量低,底物适用范围广,具有潜在的工业应用价值。产物还能进行多种衍生,溴原子可以构型翻转地被多种亲核试剂(如叠氮负离子,苯硫负离子,氯负离子等)取代,还可以水解生成光活性氮杂环丙烷衍生物,具有重要的应用前景。
相关研究成果发表在J. Am. Chem. Soc.(2013, 135, 8101)。此项研究成果是该课题组在继仿生转胺化(J. Am. Chem. Soc.,2011, 133, 12914; Org. Lett., 2012, 14, 5270; Org. Biomol. Chem., 2012, 10, 8960;Chem. Commun., 2013, 49, 1404)之后取得的又一突破性进展。
图1 手性膦-Sc(OTf)3催化的烯烃不对称溴环化反应
图2 产物的转化衍生
近日,中国科学院重庆绿色智能技术研究院(以下简称重庆研究院)研究人员将纳米孔测量技术和原子力显微成像结合,构建了一种全新的单分子生物物理检测平台,在手性Tau蛋白及其自组装结构精准检测研究中取得进展,......
美国宾夕法尼亚州立大学的科研人员推出了一种手性拓扑超导体(ChiralTopologicalSuperconductor),对于推进量子计算和探索理论手性马约拉纳粒子(Majoranaparticle......
英国伦敦大学学院、伦敦帝国理工学院领导的国际合作研究表明,利用手性(扭曲)磁体的内在物理特性,可提高机器学习任务适应性,大幅减少类脑计算的能源使用。研究结果发表在《自然·材料》杂志上。传统计算由于独立......
近年来,过渡金属催化的不对称η3-取代反应已成为构建手性不饱和片段的重要途径。中国科学院上海有机化学研究所何智涛课题组致力于过渡金属参与实现的非经典η3-取代反应的研究,并探索了一系列催化转化策略。近......
密歇根大学领导的一个研究小组已经证明,由纳米粒子自我组装的微米级"领结"可以形成一系列精确控制的卷曲形状。这一进展为简单地创造与扭曲的光线相互作用的材料铺平了道路,从而带来在机器视......
手性亚砜亚胺具碱性氮原子且在极性溶剂中具良好的溶解性,是一类有潜在应用价值的生物电子等排体(图1)。合成此类化合物的主要策略是基于手性底物的立体专一性转化,如手性亚砜的亚胺化、手性亚砜亚胺的氧化和手性......
细胞不对称性(也称细胞极性)广泛存在于动植物和微生物细胞中,其基本特征是母细胞在分裂前发生细胞极化,从而不对称分裂生成两个不同命运的子代细胞。细胞极性是生命世界产生多样性的根本原因,在细胞生长、增殖、......
手性在自然界中无处不在。界面所具有的非中心对称性为分子在界面的聚集和组装过程产生对称性破缺创造了先天条件,因此相比于体相,研究界面手性传递、自组装手性动力学对于探索手性起源、探寻生命起源、制备手性材料......
手性在自然界中无处不在。界面所具有的非中心对称性为分子在界面的聚集和组装过程产生对称性破缺创造了先天条件,因此相比于体相,研究界面手性传递、自组装手性动力学对于理解手性起源、探寻生命起源、制备手性材料......
近日,中国科学院广州生物医药与健康研究院朱强/罗爽课题组利用平行动力学拆分的策略,通过钯催化的对映体选择性环酰亚胺化反应,“一锅法”合成了两种不同骨架类型的含有季碳手性中心的杂环化合物。相关研究成果以......