发布时间:2014-07-11 11:56 原文链接: 半导体所谭平恒研究员访问苏州纳米所

  7月9日上午,应中国科学院纳米器件与应用重点实验室邀请,中科院半导体研究所谭平恒研究员到中科院苏州纳米技术与纳米仿生研究所进行交流访问,并作了题为Ultra-low-frequency Raman Modes in Two-dimensional Layered Materials 的报告。报告会由重点实验室蒋春萍研究员主持,所内相关科研人员和学生参加了本次报告会。

  谭平恒一直从事碳纳米材料以及半导体低维材料的光学和电学性质研究,系统地研究了碳纳米管、石墨烯、Ge/Si自组织量子点、GaAsN合金材料以及碳纳米管束的光学性质。报告会上,谭平恒介绍了自己最近的相关工作,主要包括提出利用多波长激光拉曼散射确定重掺杂石墨烯费米能级的新方法和实现多层石墨烯狄拉克点附近的超低能电子激发的实验研究等内容。

  报告结束后,谭平恒与在座师生展开了热烈的讨论,并回答了相关问题。

  谭平恒,博士,研究员,博士生导师。1996年毕业于北京大学物理系,2001年在中科院半导体研究所获得博士学位,之后在德国慕尼黑技术大学 Walter Schotty研究所做博士后研究。2003年至今在半导体所工作。2006年至2007年获英国皇家学会 KC Wong Royal Society Fellow资助访问英国剑桥大学工程系。谭平恒博士于2002年获得中科院院长奖学金特别奖,2003年获得第五届全国百篇优秀博士学位论文, 2005年入选北京市科技新星计划, 2007年获得第四届徐叙瑢发光学优秀青年论文一等奖,2008年获得卢嘉锡青年人才奖,2011年入选中科院青年创新促进会会员,2012年度获国家杰出青年科学基金资助。

谭平恒研究员作报告

报告会现场

相关文章

最新研究发现:水烧开后过滤再喝可防止84%的纳米/微塑料摄入!

在日常生活中,纳米/微塑料颗粒(NMPs)的存在已经成为一个不容忽视的环境问题。NMPs似乎无处不在——水、土壤、空气,甚至是人类心脏、胎盘中。它们不仅对生态系统构成威胁,也可能对我们的健康造成潜在影......

NatureMaterials|南京邮电大学汪联辉/高宇/晁洁智能DNA纳米器件,精确溶栓!

南京邮电大学汪联辉、高宇及晁洁共同通讯在NatureMaterials在线发表题为“AnintelligentDNAnanodeviceforprecisionthrombolysis”的研究论文,该......

有望治疗耐药菌感染,纳米“光镊”可捕获和操纵噬菌体

近日消息,瑞士和法国科学家携手,开发出一种芯片上的纳米“光镊”,能以最小光功率捕获、操纵和识别单个噬菌体,有望加速甚至改变基于噬菌体的疗法,治疗具有抗生素耐药性的细菌感染。相关研究论文发表于最新一期《......

非均相臭氧催化材料制备与应用领域获新进展

近日,清华大学环境学院张潇源课题组和南京理工大学环境与生物工程学院韩卫清课题组合作开发了一种具有微通道传质-纳米催化反应协同增效的二维化片层式催化剂,并对其在高级氧化水处理过程中的构效关系与传质-催化......

“溶剂筛”精准发力二极管性能飙升

钙钛矿材料具有光电性能优异、制备成本低的优点。与目前常见的有机发光二极管(OLED)相比,钙钛矿发光二极管可以将色彩纯度提升至少1倍。近年来,钙钛矿发光二极管的发光效率持续提升,但稳定性仍制约其应用。......

国家纳米中心等提出筛选抗菌纳米材料的集成方案

近日,中国科学院国家纳米科学中心高兴发课题组等在纳米毒理化学的理论设计方向取得了新进展。相关研究成果以《抗菌纳米药物反向筛选的计算与实验集成方案》(IntegratedComputationaland......

哈工大团队开发出纳米抗体型化学光遗传平台时空分辨调控细胞进程

2024年1月15日,哈尔滨工业大学生命科学中心陈西课题组在化学光遗传领域取得新突破,开发出纳米抗体型化学光遗传平台,其为光激活的小分子偶联纳米抗体二聚化系统(PANCID),用于时空分辨调控细胞进程......

合肥研究院等设计出肿瘤微环境响应的复合纳米材料

近日,中国科学院合肥物质科学研究院智能机械研究所研究员吴正岩团队,联合山东滨州医学院教授张桂龙和魏鹏飞,设计出一种核壳结构铜基纳米复合材料。该复合材料具有肿瘤微环境响应的磁共振成像性能以及杀死肿瘤细胞......

合肥研究院等设计出肿瘤微环境响应的复合纳米材料

近日,中国科学院合肥物质科学研究院智能机械研究所研究员吴正岩团队,联合山东滨州医学院教授张桂龙和魏鹏飞,设计出一种核壳结构铜基纳米复合材料。该复合材料具有肿瘤微环境响应的磁共振成像性能以及杀死肿瘤细胞......

利用纳米聚焦X射线探针揭示CuAg串联催化剂在电化学CO2还原中的协同效应

01【导读】将二氧化碳气体捕获后通过电催化CO2还原反应(eCO2RR)转化为燃料、合成气或酒精、可再生电力等增值产品,是建立可持续循环经济和减少人为二氧化碳排放的最具吸引力的途径之一。对于具有成本要......