发布时间:2018-06-01 23:09 原文链接: 厦门大学药学院第一单位发表Nature文章

来自厦门大学药学院,加州大学伯克利分校的研究人员发表了题为“Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II”的文章,发现蛋白激酶中含有的组氨酸富集结构域基因转录过程中发挥了调控作用,为解释相关分子机制提供了全新的视角和概念,同时也有助于药物设计和筛选研发。

这一研究成果公布在5月30日的Nature杂志上,文章的通讯作者为厦门大学药学院,加州大学伯克利分校周强教授,第一作者是药学院陆华松博士,其研究部分依托于厦门大学药学院、福建省药物新靶点研究重点实验室和细胞应激生物学国家重点实验室等平台完成。

基因转录是细胞基因表达和行使正常功能必不可少的重要环节。它的异常调控往往会引起不同疾病的发生;因此,转录调控机制及相关药物开发一直是生物医药领域研究的热点之一。人类细胞的编码基因是由RNA聚合酶II(Pol II) 负责转录,它是由一系列精密调控且高效的生化反应所组成。其中的一个重要反应是由转录激酶P-TEFb对PolII的CTD结构域进行磷酸化高度修饰(Hyperphosphorylation),从而实现PolII的高效转录延伸。

CTD 上有许多磷酸化修饰位点,但使得P-TEFb对CTD进行高度修饰所需的识别及作用机制则尚未得到阐释。由于高效特异性的蛋白互作结构域往往具有刚性不易变的三维空间结构,我们可以将由精准蛋白互作介导的基因转录调控称为“刚性机制”。

但近期的研究发现负责调控转录的蛋白常含有大量不可定义三维空间结构的片段,它们通常被称为低复杂性区域(Low Complexity Domain, LCD)或内在无序区域(Intrinsically Disordered Region, IDR)。研究表明,含有LCD/IDR的蛋白可以通过相位分离(类似日常生活中见到的油水分离)的方式聚合形成液滴状的特殊结构。这些结构可在一定的条件下从水溶液中分离出来,形成局部富集结构并极大促进存在于其中的各类生化反应的进行,同时也能与周围环境交换物质。由于LCD/IDR并不具有稳定的三维空间结构,其可塑性强,因此我们可以将由LCD/IDR介导的生物活性调控称为“柔性机制”。

周强教授课题组的这项研究正是揭示了“柔性机制”在转录过程中的重要作用。研究阐释了蛋白激酶中含有的组氨酸富集结构域(Histidine-Rich Domain, HRD)可以通过相位分离(Phase separation)对细胞基因转录进行调控的分子机制。该研究成果为进一步阐释该机制提供了全新的视角和概念;为以依托此机制进行的药物设计、筛选和开发提供了新思路、新靶点和新模型。因此, 该成果在理论研究及应用方面均具有重大意义。

在这篇文章中,研究人员发现 P-TEFb亚基CycT1及另一基因特异性转录调控因子DYRK1A上均含有进化上保守的组氨酸富集结构域(HRD),并与其上下游序列一起形成一个大的内在无序区域(IDR)。课题组发现该区域在体外可以通过HRD分子间的相互作用以相位分离的方式聚合形成液滴状结构。在细胞核内,CycT1和DYRK1A则依赖HRD形成斑点结构(nuclear speckle)并可发生动态融合。

在进一步的研究中,他们发现 HRD又能以和CTD直接作用的方式招募并富集Pol II到HRD形成的液滴中。当用药物破坏HRD形成的相变结构后,课题组发现 PolII CTD高度磷酸化修饰也被抑制了。

此前研究表明CycT1 Cyclin Box结构域可以用“刚性机制”的方式特异性结合P-TEFb激酶亚基CDK9。将此与这项研究相结合,课题组团队证实了CycT1通过“刚柔并济”的方式富集CDK9和Pol II到相位分离形成的液滴状结构中,从而最大化地促进PolII CTD磷酸化及转录延伸活性。

由于过去靶向药物设计多以“刚性机制”中的三维结构域为靶点,周强教授课题组对“柔性机制”的深入研究无疑会为药物设计提供新思路、新靶点。因此, 该成果在理论研究及应用方面均具有重大意义。


相关文章

北京大学合作最新Nature

钙钛矿太阳能电池(PSCs)由一个固体钙钛矿吸收体夹在几层不同的电荷选择材料之间,确保设备的单向电流流动和高压输出在p型/intrinsic/n型(p-i-n)PSCs(也称为倒置PSCs)中,电子选......

零下273.056摄氏度我国科学家Nature发文实现无液氦极低温制冷

大约一个世纪前,人类首次将氦气液化,开启了利用液氦进行极低温制冷的新纪元。随后,极低温制冷技术被广泛应用于大科学装置、深空探测、材料科学、量子计算等国家安全和战略高技术领域。然而,用于极低温制冷的氦元......

厦门大学管理学院原院长沈艺峰辞世,享年61岁

中共党员、厦门大学退休干部,管理学院原院长沈艺峰教授于2024年1月2日上午7时22分辞世,享年61岁。公开资料显示,沈艺峰1963年出生于厦门市鼓浪屿。1985年毕业于厦门大学财政金融系金融专业,获......

回顾:2023年Nature\Science上的锂电池成果

2023年Nature上的电池文章汇总1.固态电解质最新成果登上Science日本东京工业大学创新研究所全固态电池研究中心RyojiKanno教授团队利用高熵材料的特性,通过增加已知锂超离子导体的组成......

改善催化剂稳定性成果登上NatureCatalysis

Fe-N-C催化剂是一种具有非铂族金属(PGM-free)的氧还原催化剂,可替代在酸性环境中Pt用于氢质子交换膜燃料电池(PEMFCs)的阴极氧还原反应(ORR)。然而,在过去的几十年里,由于对活性位......

Nature发布2024年值得关注的科学事件,涉及环境、生命科学、AI、天文学

12月18日,《Nature》发布了2024年值得关注的科学事件。   人工智能的进步ChatGPT的兴起对今年的科学产生了深远的影响。它的创建者,位于加利福尼亚州旧金山......

破纪录|Nature:今年撤稿数量超1万篇,超八成来自这家出版社

12月12日,Nature发布一篇新闻报道:今年被撤回的文章数量急剧上升,截至2023年底撤稿数量已超过1万篇,打破年度撤稿记录。专家表示,这只是冰山一角。由于各出版商正着力于清除大量存在的虚假和同行......

纳米技术的重大飞跃,这种神奇材料再登Nature

2004年,英国曼彻斯特大学的两位科学家安德烈·盖姆(AndreGeim)和康斯坦丁·诺沃消洛夫(KonstantinNovoselov)发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从高......

Nature钙钛矿领域最新综述:可持续能源正在来临,钙钛矿串联电池争夺霸权

导语:在太阳能领域,一场革命正酝酿。钙钛矿技术的崛起引领着一系列对太阳能电池的全新探索,特别是其串联结构的出现。这意味着不仅仅是硅,太阳能电池的未来可能由更为创新和高效的钙钛矿-硅串联电池来主导。本文......

科研人员必看!Nature发出最新警告:AI人工智能对科学探索存在隐藏的危机

    导读:12月5日Nature发表的新闻评论,关于使用AI的许多论文的有效性或可靠性存在许多潜在问题,但目前尚不清楚基于AI的科学文献中的错误或不可靠的发......