发布时间:2018-09-05 16:21 原文链接: 喀斯特适生植物无机碳利用研究取得进展

  喀斯特适生植物在应对逆境下的气孔关闭时,常常采取“紧急出路”,利用来自根部的碳酸氢根离子,来解决光合机构“空载”危机。交替利用来自空气中的二氧化碳和来自土壤的碳酸氢根离子,是植物适应喀斯特逆境的重要机制之一。中国科学院地球化学研究所研究员吴沿友课题组成功开发了双向同位素示踪培养技术,解决了植物碳酸氢根离子利用份额的定量问题。例如,在遭受渗透胁迫时,喀斯特适生植物喜树对来自根际的无机碳的利用比例可达20%左右。但是,这些来自根部吸收的可溶性无机碳(DIC)是否只参与光合同化过程呢?还是另有其他作用和功能,吴沿友课题组对此进行了深入研究。

  最近,吴沿友课题组同样以喜树为研究对象,利用10%13C(NaHCO3)标记技术追踪短期内刚吸收的碳酸氢根离子在各器官的分配,并研究其对植物体内的主要光合产物(非结构性碳水化合物,NSC)的影响。研究发现:喜树各器官的NSC含量均在24h内显著增加,随后在72h只有茎内NSC含量出现下降,而根系NSC含量的变化程度比茎和叶片小得多;随着标记时间的增加,各器官NSC的δ13C受显著影响,并且根系要比茎和叶片更偏正;另外,NSC中的淀粉的δ13C比可溶性碳水化合物偏正,根系中的淀粉的δ13C更高,达-4.70‰;通过同位素混合模型计算出碳酸氢根离子对根系新形成的NSC含量的贡献比例为0.24%。上述研究结果表明:碳酸氢根不仅向光合器官贡献新的NSC,同时也刺激了植物体各器官NSC库的增加。该研究拓展了人们对植物各器官NSC快速响应碳酸氢根的认识。

  上述研究成果以Bicarbonate stimulates nonstructural carbohydrate pools of Camptotheca acuminata 为题发表在国际植物生理期刊Physiologia Plantarum上。

  该研究受国家自然科学基金(U1612441)和国家重点研发计划(2016YFC0502602)的资助。


相关文章

【植物科学研究】赛默飞一站式学科热点解决方案

国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,推动高校、职业院校更新置换先进教学及科研技术仪器,提升教学与科研水平您是否还在为填报仪器升级计划而犯难?来了!来了!赛默飞带着一站式学科热点升......

萤火牵牛花来了,发光植物首次进入美国市场

现在,美国的消费者可以预订一种持续发光的基因工程植物了。美国48个州的居民只需花29美元就可以得到一株能持续发出淡淡绿色光芒的矮牵牛。美国生物技术公司LightBio将于4月份开始运送一批5万株“萤火......

全球首次|新研究揭示外来植物的多维入侵机制

2月13日,华东师范大学生态与环境科学学院和浙江天童森林生态系统国家野外科学观测研究站研究员郭文永团队,首次在全球尺度上阐明了多因子间复杂的交互关系及其对外来植物入侵的复合驱动机制,相关研究在线发表于......

植物性系统演变过程中的自交综合征发育研究获进展

被子植物交配系统频繁地由异交向自交转变,约有10%~15%的物种呈现高度自交的特征。自交的谱系/物种在特定条件下可能受到自然选择的青睐,尤其是当自交过程中繁殖保障优势(reproductiveassu......

科学家开发一款多功能植物小RNA分析工具

近日,《科学通报》在线发表了华南农业大学园艺学院教授夏瑞团队最新研究成果,他们研究开发出一款多功能植物小RNA分析工具——sRNAminer,可便于研究人员进行一站式小RNA分析及可视化。sRNAmi......

多功能植物小RNA分析工具|一站式小RNA分析及可视化

日,《科学通报》在线发表了华南农业大学园艺学院教授夏瑞团队最新研究成果,他们研究开发出一款多功能植物小RNA分析工具——sRNAminer,可便于研究人员进行一站式小RNA分析及可视化。据介绍,植物小......

植物所在植物转座子进化方面取得进展

转座子(Transposableelements,TEs)是较多生物基因组中主要的组成部分(在玉米中可达到80%以上)。与单碱基变异相比,转座子序列长、突变速率快,可更快速地产生大效应的突变。转座子能......

植物排放的挥发性有机物如何检测?在线质谱仪轻松解决

1引言绿色植物是自然界生态系统中重要的组成部分,它一方面从环境中吸收CO2,进行光合作用形成自身所需的有机物,放出O2,另一方面,也向环境中释放微量的挥发性有机物(Volatileorganiccom......

碰一碰,不说话的植物反应很激烈

植物如何对非常微弱的机械性刺激——触碰做出响应是非常有趣的科学问题。以往,我们知道触碰含羞草、捕蝇草等植物,它们会迅速做出运动响应,而大多数植物对触碰的响应需要经过一段时间才能观察到。近日,著名国际期......

科研人员揭示高温下植物种子前身胚珠命运的保护机制

北京大学生命科学学院秦跟基教授课题组在Nature子刊NatureCommunications上在线发表了题为“ArabidopsisTCP4transcriptionfactorinhibitshi......