发布时间:2019-02-22 13:56 原文链接: 基于自旋轨道力矩效应全电学操控磁矩翻转和信息写入

  如何利用全电学方法实现磁性薄膜的确定性磁矩翻转,一直是研发自旋电子学器件的挑战性难题之一。随着研究的不断深入,实现磁矩确定性翻转的方式发生了阶跃性的变化,极大地推动了自旋电子学核心器件——磁随机存储器(MRAM)更新换代式的递进发展。磁随机存储器是最具大规模产业化前景的新一代非易失性存储器之一,它采用磁性隧道结(Magnetic Tunnel Junction, MTJ)作为存储单元。如第一代磁场驱动型磁随机存储器(Field-MRAM)是以脉冲电流产生的奥斯特场驱动磁性隧道结自由层的磁矩翻转和实现信息的写入操作;第二代自旋转移力矩(Spin Transfer Torque, STT)型磁随机存储器(STT-MRAM)是基于脉冲自旋极化电流产生的STT效应来驱动磁性隧道结自由层的磁矩翻转和信息写入,其功耗可以显著降低;而第三代自旋轨道力矩(Spin-Orbit Torque,SOT)型磁随机存储器(SOT-MRAM)是利用自旋流产生的SOT效应作为信息写入方式,即保持了MRAM高速度和低功耗等优异特性,又实现了读写路径的分离,更有利于提高器件的抗击穿和长寿命等性能。

  目前对于采用性能优异的具有垂直磁各向异性的磁性隧道结作为基本存储单元的SOT-MRAM设计,一般需要在特定方向上外加磁场的帮助下,才能够实现磁性隧道结中垂直自由层的确定性磁矩翻转和信息写入。因此,如何依靠SOT效应和全电学操控方法来实现MTJ垂直自由层的磁矩翻转,成为国际上推动SOT-MRAM器件能否进入产业化的关键瓶颈问题之一。

  针对这个难题,中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室M02课题组研究员韩秀峰团队探索出具有T型磁结构的MgO/CoFeB/Ta/CoFeB/MgO的反铁磁耦合薄膜体系,可以用来实现两种SOT效应驱动垂直自由层磁矩翻转的全电学操控模式:Z型翻转模式和T型翻转模式。T型磁结构是指两个分别具有面内磁各向异性的CoFeB和具有垂直磁各向异性的CoFeB薄膜,通过中间Ta插层的层间相互作用耦合在一起。这种层间耦合结构可以作为复合自由层直接嵌入垂直磁性隧道结的结构设计之中,并实现基于SOT效应的全电学操控磁矩翻转。在Z型翻转模式中,当电流沿面内易磁化方向(易轴)施加时,具有垂直磁各向异性的CoFeB薄膜(垂直层磁矩)不仅感受到了来自Ta层中的自旋轨道力矩(SOT),还感受到了具有面内磁各向异性CoFeB薄膜(面内层磁矩)提供的平行于电流方向的等效磁场,因此垂直CoFeB薄膜能够发生Z类型的SOT磁矩翻转,且磁矩翻转的极性(顺时针或逆时针)受水平磁矩取向的控制。在T型翻转模式中,垂直层磁矩偏离Z轴向Y方向有一个小的倾角(见图1b)。当沿面内难磁化方向(难轴)施加电流时,此时单独的垂直层磁矩已经不再满足SOT翻转的对称性条件。但是,此时面内层磁矩在SOT驱动下可以发生180°的确定性翻转。考虑到垂直层和面内层磁矩之间存在交换耦合效应,面内层磁矩翻转的同时会带动垂直层磁矩的翻转,这种在T型磁结构中发现的通过面内层磁矩翻转带动垂直层磁矩翻转的新型SOT模式,被命名为T型SOT翻转模式。

  另一方面,在垂直-垂直磁矩耦合的MgO/CoFeB/Ta/CoFeB/MgO薄膜结构中,通过二阶谐波测量,超薄Ta层的自旋霍尔角被测量出来,其大小为0.15±0.013;其磁结构的测量显示,中间Ta层提供了较强的层间交换作用和耦合效应,使得两层具有垂直各向异性的CoFeB薄膜很好地耦合在一起。证明Ta中间层能够提供较强的自旋霍尔效应和层间耦合效应,实现SOT高效地驱动磁矩翻转。

  因此,该研究团队通过Ta层的SOT和层间耦合效应,在与磁性隧道结材料体系相兼容的垂直-面内磁矩耦合的MgO/CoFeB/Ta/CoFeB/MgO薄膜结构中所实现的零磁场下两种全电学操控磁矩翻转模式,对开发实用型的数据非易失性SOT-MRAM和多功能可编程的自旋逻辑等自旋电子器件,提供了一种非常好的适用材料体系和器件工作原理。尤其是T型翻转模式的提出,可实现在同一个电流操控下垂直和面内两层薄膜磁矩的同时翻转,将有益于实现对复杂体系磁结构的更加有效和多样化的室温量子调控。

  该项工作的最新相关研究进展已发表在《自然-通讯》上(Nat. Commun. 10, 233 (2019))。该工作得到国家自然科学基金委、科技部和中科院的支持。


相关文章

湖南大学科研团队研制出高能效退火处理器芯片

组合优化问题广泛存在于社会生活和工业生产中,如自动驾驶、智慧物流、通信组网等。这类问题通常具有非确定性多项式时间困难的特点,为经典计算带来巨大挑战。量子退火计算机虽已在特定领域取得突破,但极低温的工作......

我国学者在高亮度极化阿秒电子束研究中取得进展

图双等离子体尾波实现极化电子束可控注入并保持高极化度,等离子体密度调制将电子束压缩至阿秒尺度。黄球代表电子在国家自然科学基金项目(批准号:U2267204、12022506、12275209、1210......

Nature子刊!国仪量子EPR助力纳米自旋传感器研究

基于量子特性,电子自旋传感器具有高灵敏度,可以广泛应用于探测各种物理化学性质,如电场、磁场、分子或蛋白质动力学以及核或其他粒子等。这些独特的优势和潜在应用场景,使基于自旋的传感器成为当前热点的研究方向......

新研究展示自旋轨道耦合的拉比振荡行为

近日,暨南大学研究员陈振强团队揭示了自旋-轨道光学拉比振荡现象,首次在理论和实验上同时展示了自旋-轨道耦合的拉比振荡行为。相关研究论文发表于Light:Science&Applications......

室温下量子材料实现“自旋”控制

科技日报北京8月16日电 (记者张佳欣)据《自然》杂志16日报道,英国剑桥大学领导的一个国际研究团队找到了一种控制有机半导体中光和量子“自旋”相互作用的方法,即使在室温下也能发挥作用,为潜在......

刘明院士团队:自旋神经形态器件研究新进展

生物启发脉冲神经网络架构有望通过模拟人脑的高算力、高并行度、低功耗等特性,解决冯·诺依曼架构存储墙和能效瓶颈等问题。然而,面向构建脉冲神经网络的神经形态硬件的研究尚处于探索阶段,基于传统CMOS的神经......

成对电子间自旋相关性首次获证

据最新一期《自然》杂志报道,瑞士巴塞尔大学团队首次通过实验证明,来自超导体的纠缠电子对的两个自旋之间存在负相关性,其被认为是进一步开展量子力学现象实验研究的重要一步,也是量子计算机的关键组件。两个粒子......

二维磁铁中观察到磁振子自旋

据最新一期《自然》杂志报道,美国多家大学和橡树岭国家实验室的合作研究表明,磁性半导体溴化铬中的磁振子可与激子配对,激子准粒子会发光,从而为研究人员提供了一种“看到”旋转准粒子的途径。所有磁铁,从简单的......

首次出现!科研人员观测到自旋—电荷分离的奇特现象

中国科学院精密测量科学与技术创新研究院(以下简称精密测量院)研究员管习文研究团队与美国莱斯大学教授兰迪·休利特和浦晗团队合作,通过囚禁一维超冷费米气体首次确定性观测到自旋—电荷分离的奇特现象,并发现该......

自旋分子存储器研究获进展

经典的冯·诺依曼计算机架构中,数据存储与处理分离。由于指令、数据在存储器和处理器之间的高频转移,导致计算机发展的“存储墙瓶颈”与“功耗墙瓶颈”。能否模仿人类的大脑,构建新型器件实现计算和存储一体化,完......