基于自旋轨道力矩效应全电学操控磁矩翻转和信息写入
如何利用全电学方法实现磁性薄膜的确定性磁矩翻转,一直是研发自旋电子学器件的挑战性难题之一。随着研究的不断深入,实现磁矩确定性翻转的方式发生了阶跃性的变化,极大地推动了自旋电子学核心器件——磁随机存储器(MRAM)更新换代式的递进发展。磁随机存储器是最具大规模产业化前景的新一代非易失性存储器之一,它采用磁性隧道结(Magnetic Tunnel Junction, MTJ)作为存储单元。如第一代磁场驱动型磁随机存储器(Field-MRAM)是以脉冲电流产生的奥斯特场驱动磁性隧道结自由层的磁矩翻转和实现信息的写入操作;第二代自旋转移力矩(Spin Transfer Torque, STT)型磁随机存储器(STT-MRAM)是基于脉冲自旋极化电流产生的STT效应来驱动磁性隧道结自由层的磁矩翻转和信息写入,其功耗可以显著降低;而第三代自旋轨道力矩(Spin-Orbit Torque,SOT)型磁随机存储器(SOT-MRAM)是利用自......阅读全文
基于自旋轨道力矩效应全电学操控磁矩翻转和信息写入
如何利用全电学方法实现磁性薄膜的确定性磁矩翻转,一直是研发自旋电子学器件的挑战性难题之一。随着研究的不断深入,实现磁矩确定性翻转的方式发生了阶跃性的变化,极大地推动了自旋电子学核心器件——磁随机存储器(MRAM)更新换代式的递进发展。磁随机存储器是最具大规模产业化前景的新一代非易失性存储器之一,
基于自旋轨道力矩效应全电学操控磁矩翻转和信息写入
如何利用全电学方法实现磁性薄膜的确定性磁矩翻转,一直是研发自旋电子学器件的挑战性难题之一。随着研究的不断深入,实现磁矩确定性翻转的方式发生了阶跃性的变化,极大地推动了自旋电子学核心器件——磁随机存储器(MRAM)更新换代式的递进发展。磁随机存储器是最具大规模产业化前景的新一代非易失性存储器之一,
全电学操控的非易失性多功能可编程自旋逻辑研究
基于自旋的数据存储和运算技术是解决大数据时代计算能力不足和存储空间不够的优选方案之一。而磁随机存储器和自旋逻辑器件分别是自旋电子学可以明确针对存储和逻辑运算两方面挑战难题而提出的对应关键技术。它们两者共同的物理和器件基础是:(1)高磁电阻比值的磁性隧道结材料和(2)电流驱动的磁矩翻转机理。后者还
核磁共振现象
(一)核有磁性 1.核由质子和中子组成 2.质子带正电,中子不带电 3.所以,原子核带正电的 4.另外,有些核具有内秉角动量(自旋) 5.奇数核子 6.奇数原子序数,偶数核子 因而核有磁性 磁矩 描述磁场强度与方向的矢量 自旋角动量 旋磁比,每个核都有一特定的值。有正有负,核
实验室分析仪器核磁共振相关的原子核的物理性质
1.核磁共振中原子核的直观属性原子核可以看作是带正电荷的质点,或称为点电荷。在所有元素的同位素中,有些原子核不具有自旋,但有些原子核有自旋。具有自旋的原子核是核磁共振研究的对象。2.原子核自旋的分类及自旋量子数具有自旋的原子核各自有不同的自旋特征,在核物理中描述为具有不同的自旋量子数I。原子核的自旋
核磁共振波谱仪与核磁共振相关的原子核的物理性质
1.核磁共振中原子核的直观属性原子核可以看作是带正电荷的质点,或称为点电荷。在所有元素的同位素中,有些原子核不具有自旋,但有些原子核有自旋。具有自旋的原子核是核磁共振研究的对象。2.原子核自旋的分类及自旋量子数具有自旋的原子核各自有不同的自旋特征,在核物理中描述为具有不同的自旋量子数I。原子核的自旋
电子自旋共振相关内容
中文名电子自旋共振,是由不配对电子的磁矩发源的一种磁共振技术,是研究化合物或矿物中不成对电子状态的重要工具,用于定性和定量检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性.电子顺磁共振亦称电子自旋共振(ESR). 其基本原理为电子是具有一定质量和带负电荷的一种基本粒子,它能进行
什么是磁矩
电子磁矩电子是发现较早的一种基本粒子,存在于原子核外。各种化学元素便是根据该元素原子的原子核中的质子数目,也就是该元素原子在非电离的正常状态下的原子核外的电子数目决定的。原子中的电子磁性有由电子的自旋产生的自旋磁矩和电子环绕原子核作轨道运动产生的轨道磁矩。对于不处于原子中的自由电子说来,就只有自旋磁
力矩扳手介绍
一、特点:1.扭矩精度高,稳定性好。2.适用于jingque度要求高的紧固件力矩测试及检测。3.精度:三级;误差范围:土3%。二、使用方法:使用前须调整零位:A.逆时针转动表盘玻璃中间的旋钮使从动针紧靠主动针。B.旋转表盘使从动针与刻度的零位对齐。2.方榫上装上合适的套筒。3.使用时,通过手柄缓慢加
电子自旋共振的基本原理
电子是具有一定质量和带负电荷的一种基本粒子,它能进行两种运动;一种是在围绕原子核的轨道上运动,另一种是对通过其中心的轴所作的自旋。由于电子的运动产生力矩,在运动中产生电流和磁矩。在外加恒磁场H中,电子磁矩的作用如同细小的磁棒或磁针,由于电子的自旋量子数为1/2,故电子在外磁场中只有两种取向:一与H平
电子顺磁共振的基本原理
基本原理 电子是具有一定质量和带负电荷的一种基本粒子,它能进行两种运动;一种是在围绕原子核的轨道上运动,另一种是对通过其中心的轴所作的自旋。由于电子的运动产生力矩,在运动中产生电流和磁矩。在外加恒磁场H中,电子磁矩的作用如同细小的磁棒或磁针,由于电子的自旋量子数为1/2,故电子在外磁场中只有两
塞曼效应原理和数据模型
塞曼效应证实了原子具有磁矩和空间取向量子化的现象,至今塞曼效应仍是研究能级结构的重要方法之一。正常塞曼效应可用经典理论给予很好的解释;而反常塞曼效应却不能用经典理论解释,只有用量子理论才能得到满意的解释。塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼在1896年发现:把产生光谱的光源置于足够强
怎样利用顺磁共振测量磁场强度
电子顺磁共振(EPR)是由不配对电子的磁矩发源的一种磁共振技术,是研究化合物或矿物中不成对电子状态的重要工具,用与定性和定量检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性.电子顺磁共振亦称电子自旋共振(EPR).其基本原理为电子是具有一定质量和带负电荷的一种基本粒子,它能进行两种运
学者研究提出一种新型非共线交换弹簧磁结构
操纵自旋流的极化方向是深入理解新型电荷-自旋转换机制以及实现高效的电控磁的关键。近日,松山湖材料实验室研究员吴昊团队在国家重点研发计划、国家自然科学基金等项目的资助下,研究并提出一种新型非共线交换弹簧磁结构,能够实现对自旋流极化方向的灵活调控。相关成果发表于《先进材料》(Advanced Mater
横向光力矩概念被提出!研究建立新的光力矩理论
近日,中国科学院西安光机所瞬态光学与光子技术国家重点实验室联合西班牙国家研究委员会和英国伦敦国王学院,在光子力学光力矩理论研究方面取得进展,预言了光梯度力矩和光旋度力矩的存在,并提出了横向光力矩的概念。相关研究成果于7月24日发表在《自然-通讯》上。光力矩(optical torque, OT)是光
各类力矩扳手详细介绍
想要选购力矩扳手却又不太熟悉力矩扳手的基本常识,大家可以一起来学习下各种力矩扳手知识哦,下面是铸衡力矩扳手小编给大家整理的关于各种力矩扳手的知识。 力矩扳手是扳手的一种,一般分为三类:手动力矩扳手、气动力矩扳手和电动力矩扳手,力矩扳手广泛用于对拧紧工艺有严格要求的装配线,使产品各个紧固
数显套筒力矩扳手
数显套筒力矩扳手技术参数: 1、测量范围:100-400Nm。 2、系统精度:正负2%。 3、扳手头:鹰嘴管钳式头,具有牙齿,开口尺寸:16-40。 4、具有【光报警】功能,报警值可人工输入。 5、具有峰保和顺时工作两种方式,内含校检标定程序,系数存入仪表内,永不丢
核磁共振波谱仪核磁共振的发生及过程
1.原子核在磁场中的能级分裂质子有自旋,是微观磁矩,磁矩的方向与旋转轴重合。在磁场中,这种微观磁矩的两种自旋态的取向不同,能量不再相等,磁矩与磁场同向平行的自旋态能级低于磁矩与磁场反向平行的自旋态,两种自旋态间的能量差△E与磁场强度H0成正比: 式中,h为普朗克常数;H0为磁场的磁场强度,单位为T(
实验室分析仪器-核磁共振的发生及过程
1.原子核在磁场中的能级分裂质子有自旋,是微观磁矩,磁矩的方向与旋转轴重合。在磁场中,这种微观磁矩的两种自旋态的取向不同,能量不再相等,磁矩与磁场同向平行的自旋态能级低于磁矩与磁场反向平行的自旋态,两种自旋态间的能量差△E与磁场强度H0成正比: 式中,h为普朗克常数;H0为磁场的磁场强度,单位为T(
兰州大学研究团队在声自旋调控研究方面取得重要进展
近日,兰州大学物理科学与技术学院的杨德政教授和薛德胜教授课题组在《自然·通讯》杂志上发表了题为Acoustic spin rotation in heavy-metal-ferromagnet bilayers的研究论文。通过声子与电子自旋-电荷动力学的相互作用,首次实现了声子驱动下自旋流中自旋方向
兰州大学研究团队在声自旋调控研究方面取得重要进展
原文地址:http://news.sciencenet.cn/htmlnews/2024/3/518622.shtm近日,兰州大学物理科学与技术学院的杨德政教授和薛德胜教授课题组在《自然·通讯》杂志上发表了题为Acoustic spin rotation in heavy-metal-ferroma
轨道角动量与轨道磁矩的关系是什么
sp轨道这里分为两种情况,第一sp轨道是最外层的价电子轨道,如3d金属的4s,4p轨道,他们的 磁矩不予考虑主要是上述轨道在具体结构中由于化学键的作用,能级位置一般在Fermi面以上,基本没有被填充,或者占据很少,对于体系磁矩贡献很小,其次上述轨道在空间扩展范围很大,晶胞之间重叠程度比3d轨道要大很
磁铁的磁性究竟来源于哪里?(二)
图4、斯特恩与盖拉赫和他们的实验原理,上方中间图即为盖拉赫寄给玻尔的明信片事实并没有那么简单!这根物理学实验中的“雪茄”毕竟和玻尔等人预言不严格一致。索末菲的一个天才学生——泡利敏锐地注意到了这个问题,他综合考虑了原子轨道模型与许多实验结果的不一致[4]。大胆设想,或许有些看似是电子和原子核相互作用
拓扑自旋电子学研究获进展
华南师范大学物理学院教授邓明勋/研究员王瑞强团队与合作者,在拓扑自旋电子学领域取得重要进展:在非磁拓扑Dirac半金属材料中发现了一种全新的自旋极化现象——非平衡隐藏自旋极化。相关成果9月5日在线发表于《物理评论快报》(Physical Review Letters)。 隐藏自旋极化是指在中心
带你了解小动物核磁共振成像仪
小动物核磁共振成像仪具有1.0T的永磁体,较好的磁场均匀性,搭载纽迈高性能梯度系统,提供更高的图像分辨率,为科研提供更多的研究方向和思路。 小动物核磁共振成像仪的基本原理: 核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的运动。根据量子力学原理,原子核与电子一样,也具有自旋角动量,
力矩扳手的相关选择介绍
很多用户想选择力矩扳手,却不知道该如何挑选,今天就由小编就来给大家从多方面的讲解一下如何选择力矩扳手吧,希望能带给大家帮助。 选择力矩扳手,要质量过关,质量越好的力矩扳手在精度也就是允许误差上也有很明显的区别。力矩扳手可以定量地向螺纹紧固件施加紧固力矩并以数字的形式显示紧固力矩的大小,
外尔费米子和手性电子是什么关系?
外尔费米子Weyl fermion 满足相对论性的Weyl方程,具有和光子十分相似的手性概念。我们知道,自旋是粒子的内禀自由度,其方向可以粗糙地理解为自旋向上和自旋向下。我们采用经典的物理图像,把自旋理解为自转,那么Weyl fermion的手性可以这样理解:假设Weyl fermion的动量为P(
核磁共振波谱法基本原理(一)
(一)原子核的磁性质原子核是带正电的粒子,实验证明大多数原子核在做自旋运动,因而具有一定的自旋角动量,用P表示,角动量是一个矢量,其方向服从右手螺旋定则。核由自旋产生的角动量不是任意数值,而是由自旋量子数决定的。根据量子力学理论,原子核的总角动量P的值为式中,h为普朗克常量;h为角动量的单位,h=h
半导体所等在室温全电控制自旋翻转研究中取得突破
在国家自然科学基金委、科技部和中国科学院有关项目基金的支持下,中科院半导体研究所超晶格国家重点实验室研究员王开友课题组及其合作者,在室温无外加磁场条件下,利用电场-电流的方法成功实现了垂直铁磁器件的自旋可控翻转,该工作发表在国际期刊《自然-材料》(Nature Materials,DOI:10.
关于核磁共振现象的内容介绍
核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的运动。根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:质量数和质子数均为偶数的原子核,自旋量子数为0;质量数为奇数的原子核,自旋量子数为半整