发布时间:2019-02-21 15:32 原文链接: 基因治疗手术首次应用于常见眼病

  牛津大学2月19日宣布,该校眼科教授罗伯特·麦克拉伦在英国国家健康研究所牛津生物医学研究中心的支持下,完成了世界第一例解决老年性黄斑变性(AMD)视力下降问题的基因治疗手术。

  老年性黄斑变性眼疾是造成英国人视力丧失的主要原因。干性AMD是指一种黄斑细胞的慢性退化,它会给病人视觉中心部分造成间隙或影像斑点,导致病人日常生活中出现阅读和识别困难。接受第一例手术的是牛津大学年高80岁的奥斯本夫人。像许多AMD患者一样,她的双眼都有这种疾患,但左眼情况更为严重,中心视觉已经恶化,视力非常模糊。她说自己参与试验的目的是为了给那些AMD患者带来帮助。

  导致AMD的一个关键因素是补体系统,其是人体免疫系统中与细菌作斗争的一个蛋白质系统。在发生黄斑变性时,这些蛋白质过度活跃并攻击视网膜细胞,其方式与其攻击细菌的方式相似。而基因治疗的原理就是“停用”补体系统。

  手术包括分离视网膜和向眼底注射含有病毒的溶液。该病毒带有一种经过修饰的DNA序列,可以感染视网膜色素上皮(RPE)细胞,并可以纠正导致AMD的遗传缺陷。因效果被认为是持久的,理想情况下,基因治疗只需进行一次。

  麦克拉伦解释说:“利用病毒这种天然存在的生物体,将DNA传递到病人的细胞中。当病毒在视网膜细胞内打开时,会释放出经过克隆的DNA,细胞开始制造可以改变疾病的蛋白质,来纠正由补体系统造成的炎症。”他希望随着医疗器械和相关基因治疗技术的发展,在未来几年内,患有干性AMD眼疾的人能够得到有效治疗。


相关文章

科学家发现首个可直接导致精神疾病的基因

近日,一项发表于《分子精神病学》的研究发现,单个基因GRIN2A可直接导致精神疾病。而此前的研究认为,精神疾病是由许多基因共同作用所致。根据世界卫生组织(WHO)数据,2021年全球每7人中就有1人患......

方显杨研究组与合作者共同开发了一种新型活细胞DNA成像技术

三维基因组互作与表观遗传修饰是基因表达调控的重要因素,其动态变化与细胞生长发育及癌症等疾病的发生发展密切相关。解析染色质在活细胞内的时空动态,是理解基因调控机制的重要科学问题。现有基于CRISPR-C......

胚胎“体检”狙击遗传肿瘤10年诞生百名“无癌宝宝”

11月1日,在长沙举行的第五届湖南省抗癌协会家族遗传性肿瘤专业委员会学术年会上,中信湘雅生殖与遗传专科医院(下称中信湘雅)首席科学家卢光琇宣布,该院第100位通过胚胎植入前遗传学检测(PGT)技术阻断......

新研究为眼科人工智能安装“伦理导航”

中山大学中山眼科中心教授林浩添、副研究员杨雅涵团队与合作者,通过文献计量学方法,对眼科人工智能(AI)伦理领域的发展路径、现状热点及关键解决策略进行了系统性“解码”,不仅为医学AI伦理领域提供了量化分......

我国科研人员找到导致反复“试管”失败的“基因钥匙”

10月16日,记者从中信湘雅生殖与遗传专科医院获悉,该院研究员林戈、副研究员郑伟团队,联合山东大学、上海交通大学医学院等单位的科研团队开展合作攻关,系统揭示了卵子与早期胚胎质量问题导致女性反复“试管”......

衰老如何改变我们的基因

衰老对身体产生的可见影响有时与基因活动的无形变化有关。DNA甲基化的表观遗传过程会随着年龄增长而变得不再精确,造成基因表达的变化。而这种变化与随着年龄增长而出现的器官功能衰退和疾病易感性增加有关。如今......

为何有人衰老更快?揭秘背后的400个基因

有些人比同龄人更显年轻,而有些人看着更显老;有些人年逾九旬仍身心康健,而另一些人早在数十年前就饱受糖尿病、阿尔茨海默病或行动障碍的困扰;有些人能轻松应对严重摔伤或流感侵袭,而有些人一旦住院就再难康复。......

科学家发现玉米耐热关键基因

近日,西北农林科技大学玉米生物学与遗传育种团队联合华中农业大学玉米团队在《植物生理学研究》发表论文。研究初步揭示了ZmGBF1-ZmATG8c模块通过自噬途径调控玉米耐热性的分子机制。随着全球气温持续......

降本提效!我团队研制出系列牛用基因芯片

记者21日从国家乳业技术创新中心获悉,该中心技术研发团队成功研制出奶牛种用胚胎基因组遗传评估芯片和“高产、抗病、长生产期”功能强化基因组预测芯片。该系列基因芯片具有完全自主知识产权,填补了我国基因芯片......

新研究:阻断或抑制一种特殊基因可选择性杀伤癌细胞

国际期刊《内分泌学前沿》日前刊登的一项新研究揭示,一种特殊基因对肠道吸收维生素D及其后续代谢过程至关重要,阻断或抑制该基因能够选择性抑制癌细胞生长。这一发现在癌症治疗等精准医学领域具有广阔应用前景。维......