超高分子量聚乙烯(UHMWPE)是一种平均分子质量在百万以上的聚乙烯材料,它的分子链为线性结构,具有优越的耐磨性、超高模量、高韧性、自润滑、耐环境应力开裂、化学稳定、抗疲劳、摩擦系数小等优点。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业及化工等领域。
合成纤维,特别是聚烯烃纤维,由于本身电阻率很大、介电常数和介电损耗较小,造成电绝缘性好容易积累静电,这对其在某些特殊领域内使用带来不便,甚至会造成安全问题。而导电纤维的电阻率降低到和半导体或金属相同数量级,则呈现出优良的导电效果和电磁屏蔽效果,在电子、航天航空、军事等特殊领域有广泛的应用价值。当前导电纤维或抗静电纤维常规制备方法主要包括:掺杂导电物质,表面涂敷或吸附可导电物质和表面镀金属。然而,掺杂导电物质会破坏纤维本身的性能,表面涂敷或吸附导电物质得到的纤维导电性不好而且导电层易脱落,化学镀金属虽然能得到导电性很好的纤维,但前处理工艺步骤过于复杂,而且使用重金属离子活化敏化纤维易污染环境。UHMWPE纤维高度结晶表面光滑,只有在高温(大于100℃)下才能被十氢化萘或石蜡油等溶解。而且分子链中无极性基团,造成纤维表面极其惰性,难吸附其他物质。因而不能用粗化、活化和敏化方法处理纤维来进行化学镀,也很难在表面涂敷或吸附上导电物质。
多巴胺类聚合物几乎可以黏附在所有材料表面,让多巴胺类物质在UHMWPE纤维表面聚合生成一层多巴胺类聚合物,从而达到活化效果。纤维经活化后表面富含羟基和胺基,可大量吸附金属离子,金属离子同时被多巴胺类聚合物和还原剂还原,使得纤维表面生成金属层,制得导电纤维。针对现有导电纤维制备方法的不足,中科院宁波材料所科研人员利用多巴胺类聚合物强黏附作用活化表面,用化学镀实现表面金属化,获得一种可导电、抗静电且性能优越超高分子量聚乙烯纤维,整个过程对环境友好无污染。镀银纤维具有优异的导电性能,其线电阻仅为0.15Ω/cm,可作为导线直接连接在电路中,同时还具备纤维本身高强力学性能,可应用于外太空、深海等极端环境中。相关研究结果发表在Journal of Applied Polymer Science(doi: 10.1002/app.38228),同时申请国家发明ZL1项(申请号:201110175021.3)。
UHMWPE分子链的结构单元为-CH2-,表面无极性基团,表面能低,加工过程中添加剂等杂质在表面形成弱边界层,这些因素都造成UHMWPE表面惰性,与其他树脂之间的相容性很差,限制了它在复合材料方面的应用。因此,对UHMWPE粉末表面进行改性,提高它与其他树脂之间的相容性以及增大它的表面粘结性能,是一项具有重要意义的研究课题。针对现有的UHMWPE表面改性方法的不足,研究人员利用界面缩聚改性UHMWPE表面的方法,在UHMWPE粉末表面生成一层聚脲和/ 或聚氨酯和/或聚酰胺薄膜,从而有效地改善UHMWPE粉末表面的相容性和粘结性,同时不改变UHMWPE粉末本身性能。另外,本发明的UHMWPE 粉末表面改性方法操作简单、对设备要求低、处理速度快而且处理效果好,是一种易于进行工业化生产的UHMWPE粉末表面改性方法,相关技术已获得国家发明ZL授权(授权号:201110158646.9.)。
为了提高环氧树脂的耐磨性能,利用多巴胺氧化自聚合性质,对UHMWPE粉末进行表面改性,制备得到改性粉末,并添加至环氧树脂中制备成耐磨涂层,同时与添加未改性UHMWPE的环氧涂层对比。原始的环氧涂层由于黏着磨损和疲劳磨损的综合作用,造成严重磨损,但添加了UHMWPE粉末后,环氧涂层的磨损状况发生了变化。UHMWPE的耐磨性极佳,环氧树脂相对于它来说是易被磨损物质,起到磨粒磨损作用。同时粉末自润滑性很好,又可以起到润滑作用。当涂层产生磨损时,未改性粉末容易被剥离出来,少量剥离出来的粉末在转移膜和涂层表面之间起到润滑剂的作用,自润滑作用占主导,减缓了磨损,因而磨损率较低。多巴胺有效改善了UHMWPE粉末表面惰性,增强粉末与环氧树脂之间的相容性,使得粉末不易被剥离出来。添加UHMWPE粉末可以稳定环氧涂层的摩擦,降低摩擦系数和磨损率。改性粉末的总体效果优于未改性的粉末,在降低摩擦系数和磨损率同时,还增强涂层的抗冲击韧性。而相关研究结果发表在《摩擦学学报,32(2012)435-443》上。另外UHMWPE经表面改性提高了与其他材料的表界面结合能力,由于其高韧、高强、耐候、高耐磨在海洋材料中得以应用。
上述研究工作得到了国家高技术研究发展计划项目(863)的支持,项目编号:(2009AA034605)。

UHMWPE纤维改性前后形貌变化及导电性能测试

UHMWPE粉末改性前后形貌变化及摩擦学性能测试
近日,中山大学化学学院教授郑治坤团队成功制备出高韧性、高弹性、高机械强度的编织晶界聚合物均孔膜,并报告了一种利用牺牲性小分子结构导向剂导向相邻晶畴形成编织晶界结构的制备方法。相关成果发表于《自然》。“......
聚合物半导体是新一代柔性光电子产业的基础材料,在高柔性逻辑电路、可植入智能感知器件、热电发电与制冷器件等方面具有应用前景。化学掺杂可以精细调控聚合物半导体的导电性能和光电功能,并拓展材料的应用领域。近......
近日,华南师范大学物理学院副教授郑克志团队与吉林大学教授王菲团队合作,在稀土纳米晶掺杂的S波段聚合物光波导放大器的研究中取得新突破。相关成果发表于《纳米快报》(NanoLetters)。光波导放大器是......
现代生产生活中,塑料制品具有不可替代的作用。塑料制品促进了社会经济的发展,但产生了大量的较难自然降解的废旧塑料垃圾。这对生态环境与人类健康造成危害,并引起了世界性关注。因此,废弃塑料的资源化利用对解决......
GPC简介为什么GPC很重要?GPC工作原理GPC系统凝胶渗透色谱(GPC)是最强大的通用型分析技术之一,可用于研究和预测聚合物性能。它是表征聚合物完整分子量分布的最便捷的技术。沃特世于1963年率先......
前言 聚合物是由重复单元(单体)通过化学键合形成的长链。如需了解聚合物的物理性质(如机械强度、溶解性和脆性),就需要首先了解聚合物链长度方面的相关知识。链长通常以聚合物链的分子量表示,与单体......
一、凝胶渗透色谱法测定高聚物的分子量及分子量分布高聚物的分子量及分子量分布的,是研究聚合物及高分子材料性能的最基本数据之一。它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工......
背景介绍在室温下采用六氟异丙醇(HFIP)溶解难溶性聚合物后用常规GPC进行分析,通常可替代高温GPC法而不需要昂贵的专用高温GPC装置。但由于HFIP价格昂贵,如何快速完成分析并节省溶剂也是HFIP......
是什么影响了人类的社会决策?在26日发表于《自然·人类行为》杂志的一项研究中,美国弗吉尼亚理工大学领导的国际团队揭示了一种前所未知的神经化学机制:多巴胺和5-羟色胺在影响人类社会行为中的作用。在这项研......
近日,广东聚石化学股份有限公司改性聚丙烯、改性聚乙烯、改性ABS和改性聚碳酸酯四款产品获得国际可持续发展与碳认证证书(ISCCPLUS),标志着公司成功迈入国际可持续发展和低碳循环经济体系。......