发布时间:2020-09-29 15:45 原文链接: 张余课题组揭示细菌ClassIII转录激活机制

  9月28日,中国科学院分子植物科学卓越创新中心合成生物学重点实验室研究员张余课题组在Nature Chemical Biology上,在线发表题为CueR activates transcription through a DNA distortion mechanism的研究论文,主要研究细菌Class III转录因子CueR转录激活的分子机制。

  大约50年前,法国科学家Jacob和Monod发现乳糖操纵子,首次提出基因表达受到蛋白调控。阻遏蛋白Lac I和代谢物激活蛋白CRP(cAMP receptor protein;也称catabolite activator protein,CAP)被证明能够直接结合乳糖操纵子,分别发挥转录抑制和转录激活的功能。因此,学界对转录因子如何抑制及激活转录产生研究兴趣。大约30年前,Thomas A. Steitz研究组解析出CAP/CRP与DNA的复合物晶体结构,该结构首次展示转录因子识别DNA的方式。在随后的几十年中,科学家们利用化学交联、DNA足迹、遗传突变等方法尝试了解转录因子调控基因转录的具体机制,发现转录因子在启动子DNA的结合位置直接决定其对下游基因的影响,一般来说,转录因子结合在核心启动子区域(-35区和-10区)上游发挥转录激活功能,在核心启动子区域或基因内部则抑制转录。其中,转录激活按照转录因子结合位点距离核心启动子区域远近分为两类,结合位点位于启动子核心区域上游称为第一类转录激活(Class I),结合位点与启动子核心区域稍有重叠称为第二类转录激活(Class II)。2016年、2017年,Richard H. Ebright和Thomas A. Steitz研究组以CAP为模型,在Science上报道细菌Class I与II转录激活因子与RNA聚合酶及启动子DNA的复合物结构,揭示出经典的转录激活分子机制。总体来说,它们通过DNA结合结构域与启动子DNA相互作用,通过其转录激活结构域与RNA聚合酶相互作用,将RNAP聚合酶富集到其调控的启动子DNA区域激活转录。

  在探索CAP转录激活机制的同时,David C. Fritzinger发现一种机制特异的转录因子MerR,其能够结合在耐汞基因簇启动子核心区域,与RNAP的结合位置完全重叠,在一般情况下,抑制下游基因表达;胞内汞离子浓度高时,则激活下游基因表达。该现象与上述Class I和Class II的转录激活调控方式完全相悖,因为MerR的结合位置与RNAP结合位置完全重叠,按照此前的规律其应该只发挥转录抑制功能,且MerR调控的基因启动子DNA的-35区和-10区间隔为19bp,而细菌RNA聚合酶只能识别-35区和-10区间隔为17±1的启动子。科研人员在多种细菌中发现该类转录因子的存在,因此该类蛋白被命名为MerR家族转录因子,能够感受胞内的金属离子、氧化状态及抗生素胁迫。自20世纪90年代,科研人员利用DNA足迹手段,发现MerR处于抑制态和激活态时,其结合的启动子DNA构象可能有较大的构象变化。Thomas V. O’Halloran研究组针对MerR家族蛋白进行晶体结构研究,从2003年到2015年,科研人员分别解析CueR apo protein,CueR-DNA二元复合物及CueR-Ag+-DNA三元复合物的晶体结构,阐明该家族成员在不结合配体时,结合标准的B型双链DNA;结合配体后,能够使B型双链DNA发生约90度的弯折,使其局部区域呈现出A型双链DNA的构象,这为该类转录因子的激活机制增加了神秘面纱。鉴于其转录调控方式的特殊性,科研人员将MerR家族转录激活方式命名为非典型的转录激活或Class III转录激活。

  为揭示MerR家族转录因子的转录激活机制,张余课题组以大肠杆菌中感应银离子和亚铜离子的CueR蛋白为研究对象,解析CueR、Ag+、启动子DNA及RNA聚合酶的转录激活复合物电镜结构。结果显示,CueR结合在启动子DNA的两个关键区域-35区和-10区之间,使双链DNA在四个位置发生较大程度弯折,特别是位于CueR二聚体中心的位置,DNA发生约90度的弯曲。这种由CueR结合导致的启动子DNA弯曲,使19bp的-35/-10间隔区域重新压缩到17bp的物理距离,从而使RNA聚合酶能够启动下游基因转录。此外,该复合物结构显示,虽然CueR在启动子DNA上的结合位点与RNAP聚合酶的结合位点完全重叠,但是CueR结合在启动子DNA的一侧,而RNAP结合在启动子的另一侧,CueR与RNA聚合酶没有相互作用,二者互不干扰,这一点与Class I及Class II的转录激活机制完全不同。该研究解析以CueR为代表的细菌Class III转录激活复合物结构,揭示该类转录激活蛋白不依赖与RNA聚合酶的相互作用,仅通过改变DNA构象激活转录的分子机制。

  张余课题组博士生方城力和美国西北大学博士Steven J. Philips为论文的第一作者。浙江大学医学院研究员冯钰、西北大学教授Thomas V. O’Halloran、张余为论文的通讯作者。研究工作得到浙江大学电镜中心以及国家蛋白质中心(上海)的支持,受到国家自然科学基金、中科院战略性先导科技专项计划(B类)和上海市科技创新行动计划的资助。

细菌Class III转录激活机制

相关文章

转录因子调控番茄碱代谢合成新机制获解析

甾体生物碱(SA)及其糖基化形式(SGA)是广泛存在于茄科植物中一类特殊的代谢产物,对植物病原菌和草食动物具有防御作用。迄今为止,在番茄中检测到近百种甾体类生物碱,其中α-番茄碱(α-tomatine......

中科院:蛋白质能以“表面活性剂”方式调控基因转录

4月24日,中国科学院生物物理研究所张宏课题组在DevelopmentalCell杂志在线发表论文,揭示了转录因子凝聚体界面参与调控下游基因转录起始的过程,并发现细胞内多种蛋白因子能够以协同表面活性剂......

特异靶向自噬关键转录因子TFEB的小分子化合物研新进展

2月8日,PNAS发表了中国科学院上海有机化学研究所王婧研究员、俞飚院士研究团队、房鹏飞研究员、上海交通大学医学院附属仁济医院冯海忠研究员合作的最新研究成果“特异抑制自噬关键转录因子TFEB的小分子化......

山东大学在转录因子药物靶标领域取得新进展

 NPAS4的生理功能(A)、相关疾病(B)和蛋白二聚体结构(C)  山东大学供图近日,山东大学微生物技术国家重点实验室教授武大雷课题组在《美国国家科学院院刊》上在线发表......

研究揭示转录因子MYC2调控玉米抗虫响应机制

茉莉酸是重要的植物激素,在植物响应昆虫取食的过程中发挥着重要的作用,而MYC2是茉莉酸信号转导途径中关键的转录因子。近日,中国科学院昆明植物研究所研究员吴建强团队通过遗传学、生物化学、分子生物学和生物......

启动子和转录因子在动植物细胞中有不同的共演化模式

近日,中国科学院分子细胞科学卓越创新中心研究员陈洛南团队与西北工业大学教授王文团队等在ZoologicalResearch上在线发表题为Coevolutionaryinsightsbetweenpro......

启动子和转录因子在动植物细胞中有不同的共演化模式

近日,中国科学院分子细胞科学卓越创新中心研究员陈洛南团队与西北工业大学教授王文团队等在ZoologicalResearch上在线发表题为Coevolutionaryinsightsbetweenpro......

中科院研究发现磷在植物根冠间分配的新机制

中国科学院分子植物科学卓越创新中心雷明光团队发现,一个控制根系发育的转录因子SHR通过控制木质部磷装载关键因子PHO1的蛋白稳定性,调控磷在根冠间的分配。北京时间2022年9月1日23时,Nature......

武汉植物园在莲NAC转录因子研究中获进展

NAC转录因子是植物特有的一类转录因子,广泛存在于植物界,并参与调节植物的各种生物学过程,例如器官发生、组织发育以及胁迫应答响应等。然而,莲中NAC转录因子家族尚未报道。近日,Frontiersing......

动物实验显示新技术可修复心肌细胞并促其再生

只有不到1%的成人心肌细胞可以再生,人们死亡时的心肌细胞与出生第一个月以来的心肌细胞基本相同,所以罹患心脏病可能会永久性地削弱心脏。最近,美国休斯敦大学研究人员开发出一种新技术,不仅可以修复小鼠的心肌......