DNA是生物遗传信息的重要载体,除了经典双螺旋结构外,在真核生物染色体基因调控序列以及端粒中还广泛存在一种G四联体结构。G四联体结构在调控基因表达和维持基因组稳定性等生物学过程中扮演着重要角色。单分子荧光技术是观察与测量生物大分子构象变化的重要手段,非常适合观察G四联体结构的折叠过程。中科院物理研究所软物质物理重点实验室从2002年开始逐步建立起包括单分子荧光、磁镊以及原子力显微镜技术的单分子研究体系,在DNA凝聚(JACS 2006,PRL 2012)、DNA与抗癌药物作用(NAR 2009, PRE 2015)以及端粒G四联体DNA的折叠(JACS 2013,ACS OMEGA 2016, Biosci.Rep.2017)等有关DNA分子结构的课题进行了系统性的研究,获得一系列进展。

图1:本工作发表在Journal of Physical Chemistry B杂志上,并选为期刊封面
最近,中国科学院物理研究所/北京凝聚态物理国家研究中心软物质实验室王鹏业研究组的博士生吕袭明,在窦硕星研究员和李辉副研究员的指导下,与西北农林科技大学的奚绪光教授合作,通过单分子荧光共振能量转移技术(smFRET)对端粒G四联体的重要折叠中间体——G三联体的折叠动力学展开了研究,阐明了G三联体DNA的两种结构,解析了两种结构的折叠路径,以及侧链DNA对其折叠的影响。G三联体DNA的平行结构是该研究首次发现的。本工作发表在Journal of Physical Chemistry B杂志上,并选为期刊封面(图1)。
研究人员通过对G-三联体DNA序列的多个位点进行荧光标记,使用单分子荧光共振能量转移(smFRET)技术成功区分了G三联体的平行与反平行结构。在特定的标记方式下,同一种G三联体DNA序列在折叠成两种G三联体结构(图2A)时,因为荧光标记位点的距离不同,展现出了能量传递效率上的差异(图2B)。结合圆二色谱技术,研究者发现当G三联体DNA序列两端存在单链或者双链DNA时,G三联体的折叠速度均有明显降低;当G三联体DNA序列5’端存在单链或者双链DNA时,反平行G三联体结构的折叠过程受到一定程度的抑制(图3)。该研究在此基础上提出了G三联体结构的多折叠路径模型(图4)。由于G三联体结构是G四联体的重要折叠中间体,此模型因此也完善了原有G四联体的折叠路径,为研究完整端粒DNA的折叠过程打下良好基础,对于理解人类端粒G4 DNA的结构特性及其生物学功能具有重要意义。
该工作得到了国家自然科学基金、科技部和中科院等的资助。

图2:A为两种构型的G三联体DNA在荧光标记下展现出不同的标记位点距离;B为在100 mM K+中,两种G三联体DNA因荧光标记位点距离不同而产生能量传递效率EFRE的差异,左侧柱状分布图中橙色高斯峰对应反平行结构G三联体,而蓝色高斯峰对应此次首次发现的平行结构G三联体。右侧EFRET-t曲线反映对应条件下单个G三联体的折叠动态。

图3:A为TTA单链DNA位于G三联体3’端时,向体系中加入100 mM KCl前后24 h内圆二色谱变化图;B为TTA单链DNA位于G三联体5’端时,向体系中加入100 mM KCl前后24 h内圆二色谱变化图,对比A图290 nm处反平行结构G三联体特征峰降低,说明此条件下侧链对该结构折叠过程有抑制作用。

图4:基于首次在单分子层面发现的平行结构G三联体DNA,研究者提出的G三联体DNA多折叠路径模型
南京医科大学教授郑科、郭雪江和副教授林明焰与中南大学教授、中信湘雅生殖与遗传专科医院副院长谭跃球等课题组合作,系统鉴定了哺乳动物生精细胞RNA结合蛋白、RNA结合结构域和非结构域元件,构建其男性不育相......
近日,《自然—遗传学》(NatureGenetics)在线发表河北农业大学张彩英团队研究论文。该研究率先组装高产优质抗病现代品种“农大豆2号”高质量基因组,在基因组水平发掘现代大豆育成品种特有结构变异......
中国科学院生物物理研究所朱平研究组和李国红研究组合作,揭示了连接组蛋白H5介导的核小体结合和染色质折叠和高级结构形成机制。相关论文近期发表于《细胞研究》。在真核生物中,基因组DNA被分层包装到细胞核内......
近期,中国科学院近代物理研究所核物理中心研究员雍高产在核物质相结构与中子星“超子谜团”研究方面取得进展。相关研究成果发表在《物理快报B》(PhysicsLettersB)上。核物质相结构的探测研究是当......
近日,西北农林科技大学化学与药学院刘波副教授提出了一种基于动态B-O、B←N和氢键组装的晶态多孔有机框架的新概念,为高效制备和实际应用可加工和可回收再生的多孔框架材料提供重要的理论依据,该研究成果发表......
福建农林大学教授吴双团队首次解析了番茄通过形成特殊表皮毛,改变花的结构,进而改变授粉方式的分子机制。该研究为未来改造植物授粉方式,增加结实率和提高植物的逆境适应力,以及未来转基因作物的安全控制提供了重......
半导体制造工艺电动汽车等高新技术领域对高效动力转换的需求与日俱增,碳化硅与氮化镓材料扮演关键性角色,有效降低能耗并提升动力转换效率。牛津通过原子层沉积(ALD)与原子层刻蚀(ALE)技术优化了器件工艺......
神经元能通过一种称之为神经递质的化学信号来彼此交流沟通,近日,一篇发表在国际杂志Nature上题为“Mechanismsofneurotransmittertransportanddruginhibi......
激光粒度仪是利用颗粒对光的散射(衍射)现象测量颗粒大小的。即光在行进过程中遇到颗粒(障碍物)时,会有一部分偏离原来的传播方向,颗粒尺寸越小,偏离量越大;颗粒尺寸越大,偏离量越小.散射现象可用严格的电磁......
近日,中国科学院海洋研究所尹宝树研究团队与美国加利福尼亚大学洛杉矶分校合作,针对海洋障碍层结构反演重构方面取得新进展。相关研究成果发表在《环境研究通讯》(EnvironmentalResearchCo......