近日中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室储成才课题组发现,一氧化氮(NO)作为信号分子,参与了过氧化氢诱导的水稻叶片细胞死亡。详细的分子、生理及生化分析结果表明:强光条件下,突变体叶片中NO含量的升高和降低,可分别加重和减轻水稻叶片细胞死亡程度。蛋白质亚硝基化(NO最主要的作用方式之一)转基因植物分析也表明,蛋白质亚硝基化的高低直接影响叶片细胞死亡程度。这一研究结果日前在国际杂志《植物生理学》上在线发表。
据论文的第一作者林爱红博士介绍,叶片是光合作用的主要场所。水稻抽穗后籽粒灌浆所需要的营养物质60%-90%来自叶片的光合作用。叶片的衰老是植物发育过程中必然经历的生命现象,它是植物在长期进化过程中形成的适应性,对植物本身具有重要的生物学意义。然而在农业生产上,叶片早衰则导致其过早丧失光合功能和同化作用,从而显着减少籽粒中干物质的积累,对作物的产量与品质带来不利的影响。这一科研成果为阐明水稻叶片早衰的机制奠定了基础,并有望为生物技术改良提高粮食产量提供新的可能。
NO是一种极不稳定的气体自由基小分子。在20世纪80年代以前,被认为是一种毒性气体分子,危害人体健康。1987年,美国科学家罗伯特·弗奇戈特、路易斯·伊格纳罗和弗里德·穆拉德首次发现NO在动物中作为内皮松弛因子,具有扩张血管和加快血液循环的功能。多年来的研究发现,NO在植物体内参与了众多生物学过程,具有非常重要的功能,但目前科学界对NO的作用机制仍然知之甚少。
储成才研究员课题组以水稻为研究材料,深入系统地研究农作物源库互作和产量构成的分子机制,在利用分子手段实现对植物基因表达的精细调控和作物品种的分子设计改良,提高农作物产量和品质改良研究上取得了一系列成果。
一项针对多国舞者、音乐家、艺术家和电子游戏玩家的新研究发现,从事创造性活动能显著增强大脑中最易衰老区域的功能连接,从而延缓大脑衰老。相关论文近日刊发在英国《自然-通讯》杂志上。先前已有研究表明,创造性......
日本东北大学TakujiKawamura等研究人员梳理了现有的科学研究证据,这些证据表明,定期锻炼、身体活动和健身可能影响表观遗传衰老,并有可能逆转这种衰老,为延长健康寿命和改善长期健康提供了一种充满......
衰老对身体产生的可见影响有时与基因活动的无形变化有关。DNA甲基化的表观遗传过程会随着年龄增长而变得不再精确,造成基因表达的变化。而这种变化与随着年龄增长而出现的器官功能衰退和疾病易感性增加有关。如今......
有些人比同龄人更显年轻,而有些人看着更显老;有些人年逾九旬仍身心康健,而另一些人早在数十年前就饱受糖尿病、阿尔茨海默病或行动障碍的困扰;有些人能轻松应对严重摔伤或流感侵袭,而有些人一旦住院就再难康复。......
吸烟会增加罹患多种疾病风险,并被认为会加速身体的衰老,但迄今科研人员对相关的分子机制仍缺乏了解。葡萄牙和西班牙研究人员合作近期在《基因组医学》杂志上发表论文说,吸烟导致的人体组织表观遗传特征改变与衰老......
一项基于超过5万份脑部扫描的研究表明,标准脑部图像中的特征性变化可以揭示一个人的衰老速度。相关研究结果7月1日发表于《自然-衰老》。大脑皮层(控制语言和思维的脑区)的厚度及其包含的灰质体积的关键特征,......
我国研究团队历时六年,首次揭示肾脏是运动效应的关键应答器官——其内源代谢物甜菜碱作为延缓衰老的核心分子信使,通过靶向抑制天然免疫激酶TBK1,协同阻遏炎症并缓解多器官衰老进程。这支团队由中国科学院动物......
环状RNA(circRNA)是一类单链、闭合环状的RNA分子,由mRNA前体通过反向剪切环化产生。相较于常规的线性RNA,circRNA有着独特的结构特点,其不具备5'端帽和3'端po......
一项3月12日发表于《科学进展》的研究显示,科学家发现了64个影响人类大脑衰老速度的基因,还确定了抗衰老药物和实验性化合物,这些药物和化合物可以针对这些基因逆转衰老。这是迄今为止针对大脑衰老的遗传因素......
“哀吾生之须臾,羡长江之无穷。”从秦皇汉武到普通百姓,很多人都憧憬长生不老。人的生物钟究竟是如何运转的?是什么导致人类在分子水平上的衰老?这也是现代生命科学领域的热点问题。现在,美国加州大学圣地亚哥分......