发布时间:2011-02-22 09:33 原文链接: 操控单分子可设计新型电子设备

  当电子设备小到分子水平,分子的电学性能和机械性能就成为关键因素。充分开发分子的电学性能和机械性能,根据特殊需要可开发出新型电子设备。据美国物理学家组织网2月21日(北京时间)报道,美国亚利桑那大学生物设计研究院利用分子机械性能,开发出一种用单分子控制导电性能的方法,可用来设计微小电子设备,提高设备在生化传感、远程通讯、计算存储等多方面的能力。该研究发表在近日出版的《自然·纳米技术》上。  

  在微观世界中,奇异的量子效应主导着电子设备的性能。领导该研究的陶农建(音译)一直在研制微型电子设备,他说:“某些分子有着不寻常的电学性能和机械性能,这与硅基材料不同。通过特殊的相互作用,一个分子能认出其它分子。”这些特性在设计纳米设备时,带来了极大的灵活性。

  研究小组将一个名为pentaphenylene的分子置于两个电极之间,连成回路。加上一伏特电压时,能检测到电流。改变分子相对于电极表面的朝向,能改变电导率。当不断改变分子的倾斜角度,发现电导率会随着分子和电极之间距离的缩短而增大,分子以90度角置于电极中间时,电导率达到最大值。

  陶农建解释说,电导率变化和构成分子的电子π轨道、电子轨道与电极之间的相互作用有关。π轨道可以看作是电子云,它从分子平面的两端垂直伸出,两个电极之间分子的倾斜角度改变时,这些π轨道就会和黄金电极原子的电子轨道接触并发生混合,这一过程称为侧向耦合,这对电导率产生了影响。在pentaphenylene分子中,侧向耦合效应非常明显,随着轨道耦合作用越强,导电率能提高10倍。反过来,四苯基(tetraphenyl)分子的倾斜角对电动机械性没有影响,可以在实验中抑制侧向耦合,使电导率保持不变。  

  陶农建还表示,当前可以从增强或弱化轨道侧向耦合效应两方面来设计分子设备,满足特殊设备电导率微调的需要。

相关文章

《水质电导率的测定电极法》等7项国家生态环境标准征求意见

为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质电导率的测定电极法》等7项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http......

美国FCC新规:输美电子设备“不认”中国实验室检测结果

当地时间2025年5月22日,美国联邦通信委员会(FCC)以4:0的表决结果通过了一项新规定,该规定明确禁止被视为美国国家安全风险的中国实验室检测在美国使用的电子设备,如智能手机、摄像头和计算机。这一......

中国计量院(超)纯水电导率量值国际计量互认结果首次公布

近日,中国计量科学研究院(以下简称“中国计量院”)(超)纯水电导率量值的校准与测量能力(CMC)通过国际评审,相关结果在国际计量局(BIPM)官网正式公布。此次公布标志着中国计量院(超)纯水电导率量值......

全球首例英国男孩颅内植入设备控制癫痫发作

英国男孩奥兰·诺尔森接受手术,在颅内植入电子设备,以控制其癫痫发作的频率。他因此成为全球首个接受这类手术的人。据英国广播公司23日报道,诺尔森3岁确诊患上伦诺克斯-加斯托综合征,这是一种常在学龄前发作......

欧盟计划引入新“能源标签”:制造商需标注电池寿命等

北京时间9月1日消息,近日,欧盟公布了一项新草案,计划在所有手机、平板电脑等电子设备上引入一个新的“能源标签”,即强制要求手机制造商向消费者提供有关电池寿命,设备防水、防尘性能等信息。据了解,欧盟希望......

香港理大成功研发高透气超弹性导电材料

原文地址:http://news.sciencenet.cn/htmlnews/2021/3/455030.shtm新华社香港3月25日电(记者张雅诗)香港理工大学日前宣布,该校研发出高透气超弹性导电......

胴体肉质电导率测定仪使用方法

胴体肉质电导率测定仪可维持8-10个小时的测量,主要用于肉制和蛋品品的检测,主要应用于畜牧家禽动物营养和食品等领域,德国麦特斯MATTHAUS品牌,可连接蓝牙调节仪器界面,自动储存测量数据,可连接电脑......

研究人员研制出高室温离子电导率的光聚合凝胶电解质

近日,我所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队发展了一种高室温离子电导率的光聚合凝胶准固态电解质,表现出优异室温离子电导率、宽电化学窗口和出色的柔韧性,并以此......

我国学者在含钛多晶橄榄石电导率分析中获进展

前人关于高温高压条件下微量元素掺杂的矿物岩石的电学性质报道,主要集中在氢元素(或结构水),而其它的微量元素较少。近来,关于高温高压下含水的橄榄石弹性波速研究结果表明,钛含量对弹性波传播速度有重要影响,......

首个微芯片内集成液体冷却系统问世

 英国《自然》杂志9日发表一项电子学重磅研究,瑞士洛桑联邦理工学院(EPFL)研究团队报告了首个微芯片内的集成液体冷却系统,这种新系统与传统的电子冷却方法相比,表现出了优异的冷却性能。这一成......