发布时间:2019-12-30 16:43 原文链接: 新型基因编辑复合物的作用机理

  在一项新的研究中,来自美国哥伦比亚大学的研究人员捕捉到一种由对现有的基于CRISPR的工具进行改进而产生的新型基因编辑工具的首批结构图片。他们在霍乱弧菌中发现一种独特的“跳跃基因”并且这种跳跃基因可以在基因组中插入较大的基因负荷(genetic payload,即DNA序列)而不引入DNA断裂,基于此,他们开发出这种称为INTEGRATE的新型基因编辑工具。相关研究结果近期发表在Nature期刊上,论文标题为“Structural basis of DNA targeting by a transposon-encoded CRISPR–Cas system”。论文通讯作者为哥伦比亚大学瓦格洛斯内外科学院生物化学与分子生物物理学助理教授Samuel Sternberg博士和哥伦比亚哥伦比亚大学生物化学与分子生物物理学助理教授Israel Fernandez博士。

INTEGRATE复合物的结构显示Cascade(深蓝色)、TniQ(淡蓝色)和向导RNA(红色),图片来自Sternberg and Fernández Labs at Columbia University Irving Medical Center。

  在这项新的研究中,这些研究人员利用低温电镜技术冻存正在发挥作用时的这种基因编辑复合物,从而揭示它的工作原理的高分辨率细节。

  Sternberg说,“我们在我们之前的研究中展示了如何利用INTEGRATE在细菌细胞中进行靶DNA插入。这些新的图片以令人难以置信的分子细节揭示这种基因编辑复合物的生物学机制,这有助于我们进一步改进这种基因编辑系统。”

  开始时与CRISPR一样,但是结局不同

  这些研究人员使用了一种称为低温电镜的技术,该技术涉及在液氮中快速冷冻这种基因编辑复合物样品,然后用电子轰击它。他们随后使用在电子显微镜下捕获的图片产生这种INTEGRATE系统的原子分辨率结构模型。

  这种结构模型揭示这种基因编辑复合物由两个主要部分组成,这两个主要部分排列成螺旋丝状结构。在这两个主要部分中,较大的部分称为Cascade,缠绕并携带向导RNA(gRNA),用于扫描细胞中匹配的DNA序列。一旦Cascade定位并结合了靶序列,它将使DNA链穿过位于这种基因编辑复合物末端的TniQ“转座”蛋白,并招募其他有助于修饰靶DNA序列的酶。

  INTEGRATE的这种扫描机制似乎与其他经过充分研究的CRISPR系统的工作方式相似,其中的一些CRISPR系统也含有带有gRNA的Cascade复合物。但是,与其他使用Cascade靶向DNA进行切割的CRISPR系统不同的是,INTEGRATE中Cascade的功能是靶向DNA以便基因负载的高精度插入。

  在之前的研究中,Sternberg及其同事们通过使用遗传学和生物化学提出这种CRISPR分子机器如何在功能上与转座复合物---负责基因“跳跃”的分子---存在关联,这项新的研究证实他们提出的这种观点是正确的。

  为何重要?

  如今,世界各地的许多科学家们都在使用CRISPR-Cas9来快速低成本地对细胞基因组进行精确修饰。但是,CRISPR的大多数用途涉及切割靶DNA的两条链,然后必须通过宿主细胞自身的分子机器修复DNA断裂。控制这种修复过程仍然是这个领域中的主要挑战,并且不想要的基因编辑常常被无意间引入了基因组中。此外,现有工具在精确地插入较大的基因负荷方面通常表现不佳。提高基因编辑的准确性是人们的当务之急,这对于确保使用这种技术开发的疗法的安全性至关重要。

  这种由Sternberg实验室开发的新型INTEGRATE系统可以准确地插入较大的DNA序列,而无需依靠细胞的分子机器来修复断裂的DNA链。因此,相比于目前广泛使用的原始CRISPR-Cas系统,INTEGRATE被证明是一种更准确、更有效的基因修饰方法。这种新工具还可以帮助科学家们在DNA修复活性有限的细胞类型(比如神经元)中进行基因编辑。在神经元中,使用CRISPR进行基因编辑的尝试相对而言不太成功。

  下一步是什么

  除了为未来的蛋白质工程提供信息之外,这些新结构突出了一个可能的校对检查点。现有的CRISPR技术经常出现所谓的“脱靶效应”,即不加区分地对非靶序列进行修饰。这些新结构揭示了Cascade和TniQ如何协同工作,从而确保仅将DNA片段插入到正确的 “在靶(on-target)”序列中。这些研究人员计划在开发用于疾病的新治疗方法的工具时进一步探究这个检查点。


相关文章

方显杨研究组与合作者共同开发了一种新型活细胞DNA成像技术

三维基因组互作与表观遗传修饰是基因表达调控的重要因素,其动态变化与细胞生长发育及癌症等疾病的发生发展密切相关。解析染色质在活细胞内的时空动态,是理解基因调控机制的重要科学问题。现有基于CRISPR-C......

胚胎“体检”狙击遗传肿瘤10年诞生百名“无癌宝宝”

11月1日,在长沙举行的第五届湖南省抗癌协会家族遗传性肿瘤专业委员会学术年会上,中信湘雅生殖与遗传专科医院(下称中信湘雅)首席科学家卢光琇宣布,该院第100位通过胚胎植入前遗传学检测(PGT)技术阻断......

我国科研人员找到导致反复“试管”失败的“基因钥匙”

10月16日,记者从中信湘雅生殖与遗传专科医院获悉,该院研究员林戈、副研究员郑伟团队,联合山东大学、上海交通大学医学院等单位的科研团队开展合作攻关,系统揭示了卵子与早期胚胎质量问题导致女性反复“试管”......

衰老如何改变我们的基因

衰老对身体产生的可见影响有时与基因活动的无形变化有关。DNA甲基化的表观遗传过程会随着年龄增长而变得不再精确,造成基因表达的变化。而这种变化与随着年龄增长而出现的器官功能衰退和疾病易感性增加有关。如今......

为何有人衰老更快?揭秘背后的400个基因

有些人比同龄人更显年轻,而有些人看着更显老;有些人年逾九旬仍身心康健,而另一些人早在数十年前就饱受糖尿病、阿尔茨海默病或行动障碍的困扰;有些人能轻松应对严重摔伤或流感侵袭,而有些人一旦住院就再难康复。......

科学家开发出超大片段DNA精准无痕编辑新方法

基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......

科学家发现玉米耐热关键基因

近日,西北农林科技大学玉米生物学与遗传育种团队联合华中农业大学玉米团队在《植物生理学研究》发表论文。研究初步揭示了ZmGBF1-ZmATG8c模块通过自噬途径调控玉米耐热性的分子机制。随着全球气温持续......

降本提效!我团队研制出系列牛用基因芯片

记者21日从国家乳业技术创新中心获悉,该中心技术研发团队成功研制出奶牛种用胚胎基因组遗传评估芯片和“高产、抗病、长生产期”功能强化基因组预测芯片。该系列基因芯片具有完全自主知识产权,填补了我国基因芯片......

新研究:阻断或抑制一种特殊基因可选择性杀伤癌细胞

国际期刊《内分泌学前沿》日前刊登的一项新研究揭示,一种特殊基因对肠道吸收维生素D及其后续代谢过程至关重要,阻断或抑制该基因能够选择性抑制癌细胞生长。这一发现在癌症治疗等精准医学领域具有广阔应用前景。维......

我国科学家发现大豆种子油蛋比调控关键基因

记者从安徽农业大学获悉,该校王晓波教授团队联合中国农业科学院作物科学研究所邱丽娟、李英慧研究员团队,解析了关键基因对大豆种子油脂和蛋白比例(油蛋比)的调控机制,为高油或高蛋白大豆品种选育提供了新方向。......