CRISPR-Cas系统广泛存在于细菌和古细菌中,是原核生物的一种适应性免疫系统,用来抵御病毒、质粒等外源核酸的侵入。然而在2013年,有研究人员在ICP1噬菌体中发现了I-F型CRISPR-Cas系统。噬菌体的CRISPR-Cas系统相较于细菌CRISPR-Cas系统有何特点尚待研究。
2024年7月8日,北京化工大学冯越课题组与清华大学杨茂君课题组合作在Nature Chemical Biology发表了题为“Cas1 mediates the interference stage in a phage-encoded CRISPR–Cas system”的研究长文以及“An alternative mechanism for recruiting Cas2/3 in a phage-encoded CRISPR–Cas system”的研究简报,报道了ICP1噬菌体CRISPR-Cas系统独特的招募Cas2/3降解靶DNA的机制。
本文通过结构生物学、生物化学和噬菌体学等多种手段阐明了ICP1 CRISPR-Cas系统复合物全新的招募Cas2/3的分子机制。首先,他们发现ICP1 Cas1可以结合ICP1 Csy或Csy-dsDNA复合物,而铜绿假单胞菌的Cas1并不能结合其Csy或Csy-dsDNA复合物;其次,ICP1 Cas1-Cas2/3复合物结合ICP1 Csy-dsDNA后,可以形成稳定的Csy-dsDNA-Cas1-Cas2/3复合物,该复合物由冯越课题组和杨茂君课题组合作解析(图1)。该复合物中,Cas1-Cas2/3复合物位于中心,两侧各结合一个Csy-dsDNA复合物,总分子量约1 MDa,这也是首个I-F型CRISPR-Cas系统结合Cas2/3的复合物结构,而铜绿假单胞菌Cas1-Cas2/3结合其Csy-dsDNA后,Cas1会逐渐从Cas2/3解离下来,最终只能形成Csy-dsDNA-Cas2/3复合物;最后,体内和体外的活性实验证明,ICP1 Cas2/3只有在Cas1存在时,才能更好地降解Csy复合物靶向的DNA,而铜绿假单胞菌Cas1几乎不影响Cas2/3降解靶DNA。结合以上结果,冯越课题组提出了ICP1 CRISPR-Cas系统由Cas1招募Cas2/3进行靶DNA降解的新机制。
综上所述,Cas1在ICP1 CRISPR-Cas系统中通过连接Csy复合物和Cas2/3来介导靶DNA的降解。这一发现展示了Cas1在CRISPR-Cas系统干扰阶段的关键作用,打破了领域内长期以来关于其仅在适应阶段发挥作用的传统观念。
清华大学张来幸博士、北京化工大学王浩博士、清华大学曾建伟博士、北京化工大学曹雪利博士和已毕业硕士生高政宇为本论文的共同第一作者,北京化工大学冯越教授,张怡副教授与清华大学杨茂君教授为本文的共同通讯作者。
原文链接:
https://www.nature.com/articles/s41589-024-01659-5
https://www.nature.com/articles/s41589-024-01667-5
近日,东北农业大学教授张颖团队副教授张博等人构建了噬菌体“搭便车”携播体系,为叶际微生物组调控和细菌性病害防治提供了一种新颖高效的方法。相关成果发表在EnvironmentalScience&......
噬菌体占肠道病毒的90%以上,作为肠道菌群的关键调控因子,与炎症性肠病、结直肠癌、糖尿病等疾病密切相关。尽管小鼠、猪和食蟹猴被广泛用作肠道研究模型,其噬菌体多样性仍缺乏系统认知,跨物种比较及与人类噬菌......
大约90%的帕金森病为“散发性”,其病因不明。2030年,我国将成为世界帕金森病人数最多国家,严重威胁人民健康和生活质量,探索帕金森病病因,对研发对因防治新方法,具有迫切性及重大意义。日前,北京大学科......
8月23日,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室王晓雪团队联合美国哈佛大学医学院MatthewK.Waldor团队,发现了温和噬菌体编码的新颖的三组分毒素-抗毒素系统,并解析了这一......
CRISPR-Cas系统广泛存在于细菌和古细菌中,是原核生物的一种适应性免疫系统,用来抵御病毒、质粒等外源核酸的侵入。然而在2013年,有研究人员在ICP1噬菌体中发现了I-F型CRISPR-Cas系......
CRISPR-Cas系统广泛存在于细菌和古细菌中,是原核生物的一种适应性免疫系统,用来抵御病毒、质粒等外源核酸的侵入。然而在2013年,有研究人员在ICP1噬菌体中发现了I-F型CRISPR-Cas系......
4月26日,噬菌体资源库建设研讨会在京召开。会议由中国科学院微生物研究所主办,中国普通微生物菌种保藏管理中心和mLife期刊联合承办。会上,微生物所所长钱韦阐述了噬菌体库建设对应对耐药问题的重要性,希......
近日消息,瑞士和法国科学家携手,开发出一种芯片上的纳米“光镊”,能以最小光功率捕获、操纵和识别单个噬菌体,有望加速甚至改变基于噬菌体的疗法,治疗具有抗生素耐药性的细菌感染。相关研究论文发表于最新一期《......
噬菌体(Phage)和其他可移动遗传元件(MGE)对细菌施加了巨大的选择压力,作为回应,细菌也发展出了广泛的防御机制。其中最我们熟知的就是——CRISPR-Cas系统,这是一组在细菌中广泛存在的RNA......
噬菌体是地球上数量最庞大的生物群体,是原核生物的病毒,对维持地球生态系统的有序运行意义重大。在噬菌体和宿主漫长的竞赛中,为抵御噬菌体的入侵,原核生物进化出多种系统进行防御,如限制修饰系统、CRISPR......