发布时间:2015-08-03 09:58 原文链接: 日本研制世界功率最强激光器:功率一千万亿瓦特

328英尺(100米)长的激光器。该激光器主要通过将能量集中在1皮秒(兆分之一秒)内发射出去,从而能够释放巨大的能量。

在实验中,激光束首先通过一个类似于荧光灯的玻璃装置。这种装置的作用主要用于能量聚焦以及放大。

位于大阪的研究人员研制出输出功率达到2拍瓦的激光器激光快速点火实验平台 (LFEX)。激光器释放的能量相当于全世界电力消耗的100倍。

  新浪科技讯 北京时间7月31日消息,据国外媒体报道,日本声称已研制出迄今为止发射功率最强的激光器。位于大阪的研究人员已经能够使用该激光器发射出功率为2拍瓦(一千万亿瓦特)的激光束,并将该激光器命名为激光快速点火实验平台 (LFEX)。

  科学家称,该激光束的能量相当于全世界电力消耗的1000倍。尽管该激光器能够发射出如此巨大的功率,激光器本身需要的能量仅相当于发射两秒微波的能量。为了聚集能量,激光器的点火时间仅为1皮秒,或者一万亿分之一秒。同时,为了增加激光束的能量,激光束首先通过一个按照特定位置放置的玻璃装置进行聚焦。

  Junji Kawanaka研究所电子信息工程系的助理教授称:“为了和世界上最先进的激光器进行竞争,我们的目标是输出功率达到10拍瓦。” 根据科普杂志的介绍,一个50000瓦特的激光器能够支持一架无人机飞行一英里。而日本现在正在使用的激光器能量是这种50000瓦激光器能量的100亿倍。

  迄今为止,世界上发射功率最大的激光器为德克萨斯奥斯汀大学研制的激光器,能够发射1拍瓦的光束。而根据该小组的介绍称,他们研制的激光相比德克萨斯的激光而言,不仅在输入功率上增加了一倍,在输出能量上也达到了100倍。该实验的详细细节已经发表在《等离子体物理学和受控核聚变》杂志上。

相关文章

创新激光技术首次捕获非磁性金属的磁信号

铜、金、铝等常见非磁性金属内部微弱的磁信号,百年来始终未能被科学仪器破译。发表于最新一期《自然·通讯》杂志的一项最新研究称,来自以色列希伯来大学、美国宾夕法尼亚州立大学和英国曼彻斯特大学的研究团队,借......

哈工大科研团队在《自然》发表研究成果推动“自由定制”激光技术发展

近日,哈尔滨工业大学深圳校区宋清海、肖淑敏教授团队在激光技术领域取得重要突破。团队成功攻克了传统激光模斑形状、偏振、角动量受限的技术瓶颈,创新性开发出可自由调控发射波前的新型激光光源。研究成果发表在《......

胡丽丽:打造激光器“心脏”的中国女科学家获国际大奖

记者从中国科学院上海光学精密机械研究所获悉,该所学术委员会副主任、先进激光与光电功能材料部研究员、博士生导师胡丽丽,今年1月荣获2025年国际玻璃协会(ICG)主席奖,成为我国首位获此殊荣的女科学家。......

亚洲首个先进阿秒激光大科学装置在东莞启动建设

先进阿秒激光设施建设示意图亚洲首个国家重大科技基础设施——先进阿秒激光设施在东莞启动建设1月10日,位于东莞松山湖科学城的亚洲首个、国家重大科技基础设施先进阿秒激光设施项目正式启动建设。这一项目将布局......

创锐光谱完成近亿元PreA轮融资光速光合领投

近日,泛半导体缺陷检测创新型企业创锐光谱宣布完成近亿元Pre-A轮融资,由光速光合领投。融资资金将主要用于技术研发和产能扩容。创锐光谱成立于2016年,是全球领先的瞬态光谱技术产业化企业,立足瞬态光谱......

我所从能量和动量维度直接观测到石墨中载流子倍增

文章来源:大连化物所近日,我所化学动力学研究室表面反应动力学研究组(1114 组)周传耀研究员等利用自行研制的基于高次谐波产生的飞秒时间分辨角分辨极紫外光电子能谱仪,对石墨狄拉克点附近的载流......

荧光与发光光谱专场深究机理创制新仪器、新探针

第23届全国分子光谱学学术会议和第五届光谱年会上,11月30日下午在“荧光与发光光谱新方法、新技术”分会场中,多位专家学者就仪器研制、荧光探针、标记技术、机理等方面做出精彩报告。崂山实验室、山东师范大......

一起快乐打卡,享受激光+探索应用创新之旅!

2024慕尼黑华南激光展将于2024年10月14-16日于深圳国际会展中心(宝安新馆)隆重举办。本届展会顺应2024年市场趋势,推出主题观展路线打卡活动,精心策划了三条主题路线:1.医疗应用洞察2.3......

新型薄片超快激光器输出功率超300W

近日,中国科学院大连化学物理研究所研究员李刚、研究员金玉奇团队在薄片超快激光器研究方面取得新进展。团队基于全链条自主研发的72通薄片泵浦模块,实现了薄片皮秒激光再生放大输出功率超过300W。相关成果发......

Nature揭秘大脑能量补给站!

大脑,这个由亿万神经元构成的复杂网络,其高效运转依赖于充足且不间断的营养和氧气供应。星形胶质细胞,作为神经元的亲密伙伴,不仅遍布整个神经系统,还掌控着大脑对葡萄糖的摄取与代谢。然而,神经元与星形胶质细......