边缘计算技术是赋能工业控制等高实时、高可靠应用的关键支撑技术,通过将计算资源部署于终端设备附近,可为工业现场提供丰富的算力资源,有效降低任务传输和处理时延。然而,由于终端设备上承载的任务异构多样,而无线网络的通信资源严重受限,易导致任务迁移过程中的计算资源抢占和无线网络拥塞。
中国科学院沈阳自动化研究所工业5G团队提出了数字孪生驱动的异构任务及资源的端边协同调度方法。相关研究成果以Digital Twin-Driven Collaborative Scheduling for Heterogeneous Task and Edge-End Resource via Multi-Agent Deep Reinforcement Learning为题,发表在IEEE Journal on Selected Areas in Communications上。
该研究采用数字孪生技术,对感知/控制等异构任务、CPU/GPU等异构算力资源、信道/功率等异构通信资源进行了虚拟化建模。在充分考虑异构任务的截止期要求、端边设备的计算类型和处理能力、数字孪生的资源估计偏差、终端的最大发射功率和可容忍的峰值干扰功率基础上,研究构建了一个任务处理时间最小化问题,提出了基于多智能体深度强化学习的端边协同调度方法。这一方法通过离线的集中式训练和在线的分布式执行,同步完成计算类型匹配、端边任务划分、算力资源分配和功率控制,实现异构任务及网算资源的端边协同调度,满足异构任务的多样化需求。
研究工作得到国家重点研发计划、国家自然科学基金、辽宁省自然科学基金等的支持。
无线网络的数字孪生模型
基于多智能体深度强化学习的端边协同调度
边缘计算技术是赋能工业控制等高实时、高可靠应用的关键支撑技术,通过将计算资源部署于终端设备附近,可为工业现场提供丰富的算力资源,有效降低任务传输和处理时延。然而,由于终端设备上承载的任务异构多样,而无......
边缘计算技术是赋能工业控制等高实时、高可靠应用的关键支撑技术,通过将计算资源部署于终端设备附近,可为工业现场提供丰富的算力资源,有效降低任务传输和处理时延。然而,由于终端设备上承载的任务异构多样,而无......
边缘计算技术是赋能工业控制等高实时、高可靠应用的关键支撑技术,通过将计算资源部署于终端设备附近,可为工业现场提供丰富的算力资源,有效降低任务传输和处理时延。然而,由于终端设备上承载的任务异构多样,而无......
边缘计算技术是赋能工业控制等高实时、高可靠应用的关键支撑技术,通过将计算资源部署于终端设备附近,可为工业现场提供丰富的算力资源,有效降低任务传输和处理时延。然而,由于终端设备上承载的任务异构多样,而无......
边缘计算技术是赋能工业控制等高实时、高可靠应用的关键支撑技术,通过将计算资源部署于终端设备附近,可为工业现场提供丰富的算力资源,有效降低任务传输和处理时延。然而,由于终端设备上承载的任务异构多样,而无......
边缘计算技术是赋能工业控制等高实时、高可靠应用的关键支撑技术,通过将计算资源部署于终端设备附近,可为工业现场提供丰富的算力资源,有效降低任务传输和处理时延。然而,由于终端设备上承载的任务异构多样,而无......
由我国自主研发的面向工厂自动化应用的高速现场无线网络技术规范(以下简称WIA-FA)日前正式成为国际电工委员会(IEC)标准,这也是全球唯一面向工厂自动化高速控制应用的无线技术标准,标志着我国工业自动......
近日,我国自主研发的面向工厂自动化应用的高速现场无线网络技术规范(WIA-FA)正式成为国际电工委员会(IEC)标准(IEC62948),标志着我国自主研发的工业自动化无线网络技术已得到国际自动化领域......
近日,经国际电工委员会(IEC)和欧洲电工技术标准化委员会(CENELEC)联合投票,由中国科学院沈阳自动化研究所牵头研究制定的面向过程自动化的工业无线网络WIA-PA技术标准,进一步正式被采纳成为欧......
WAPI是中国无线局域网安全强制性标准,主要是因为目前通用的WIFI存在安全隐患,因此,我国提出WAPI,以便加强无线局域网的安全性问题。国家发展和改革委员会副主任张晓强、高技术产业司司长綦成元为实验......