纳米通道浸润性研究对于解决界面化学和流体力学中遗留的众多挑战性问题至关重要,并广泛应用于物质传输、纳米限域催化、限域化学反应、纳米材料制备、能量储存和转化、液体分离等领域。纳米通道的尺寸是影响液体浸润性的关键因素,当通道直径小于10纳米时,通道内液体由于限域效应出现非连续流体行为;当通道直径大于10 纳米时,通道为液体提供更大的受限空间,适用于液体传输和纳米材料制备。经过二十多年的发展,纳米通道浸润性研究仍面临许多挑战,其中最大的挑战是探索纳米通道中非连续流体的物理来源。随着纳米材料表征技术的进步,将为理解纳米限域流体浸润性的机理提供有力的实验证据。同时,分子动力学等理论模拟也将从理论上对实验结果提供支持。
近日,中国科学院院士、中国科学院理化技术研究所研究员江雷(通讯作者)、理化所副研究员张锡奇(第一作者)在《先进材料》(Advanced Materials)上,发表了题为Wettability and Applications of Nanochannels 的综述(Adv. Mater. 2018, 1804508)。文章首先介绍了江雷提出的“量子限域超流体”概念,并用于解释纳米通道中超快物质传输和非连续流体行为。随后,文章分别在理论和实验上总结了一维、二维和三维纳米通道浸润性,从分子模拟、液体浸润性、外部刺激(温度和电压)调控浸润性、熔体和液体浸润限域策略、液体传输和限域纳米材料制备等方面对纳米通道浸润性与应用进行论述。最后,文章在展望中指出,“量子限域超流体”概念将为理解纳米通道中非连续流体行为提供新思路,并将引发一场量子限域化学的革命。
相关工作得到国家重点研发计划、国家自然科学基金委和高等学校学科创新引智计划的大力支持。
近年来,纳米通道单分子分析发展迅速。然而,固态纳米孔结构的低重现性、低信噪比以及生物纳米孔支撑体系的低稳定性制约了纳米孔技术的规模化应用。中国科学院重庆绿色智能技术研究院精准医疗中心与华中科技大学合作......
中国科学技术大学工程科学学院近代力学系、中国科学院材料力学行为和设计重点实验室王奉超研究团队在纳米通道气体输运的理论研究方面取得进展,提出普适的Knudsen理论模型,适用于定量描述任意壁面粗糙度的纳......
中国科学技术大学工程科学学院近代力学系、中国科学院材料力学行为和设计重点实验室王奉超研究团队在纳米通道气体输运的理论研究方面取得进展,提出普适的Knudsen理论模型,适用于定量描述任意壁面粗糙度的纳......
中国科学技术大学工程科学学院近代力学系、中国科学院材料力学行为和设计重点实验室王奉超研究团队在纳米通道气体输运的理论研究方面取得进展,提出普适的Knudsen理论模型,适用于定量描述任意壁面粗糙度的纳......
【引言】我们探索了是否可以制造纳米通道,以在高温和高压条件下排斥大约为水合离子大小(如Na+,6.6Å)的小气体分子,以用于催化。例如,副产物水强烈抑制了CO2加氢成液体燃料(如甲醇)的动力学和热力学......
近期,中国科学院合肥物质科学研究院技术生物与农业工程研究所研究员吴正岩课题组研制出一种浸润性受到光调控的植物表面防护剂,可降低除草剂类农药对非靶向作物的伤害,减少除草剂的危害,对作物进行保护。相关成果......
纳米通道浸润性研究对于解决界面化学和流体力学中遗留的众多挑战性问题至关重要,并广泛应用于物质传输、纳米限域催化、限域化学反应、纳米材料制备、能量储存和转化、液体分离等领域。纳米通道的尺寸是影响液体浸润......
纳米通道浸润性研究对于解决界面化学和流体力学中遗留的众多挑战性问题至关重要,并广泛应用于物质传输、纳米限域催化、限域化学反应、纳米材料制备、能量储存和转化、液体分离等领域。纳米通道的尺寸是影响液体浸润......
纳米通道浸润性研究对于解决界面化学和流体力学中遗留的众多挑战性问题至关重要,并广泛应用于物质传输、纳米限域催化、限域化学反应、纳米材料制备、能量储存和转化、液体分离等领域。纳米通道的尺寸是影响液体浸润......
纳米通道浸润性研究对于解决界面化学和流体力学中遗留的众多挑战性问题至关重要,并广泛应用于物质传输、纳米限域催化、限域化学反应、纳米材料制备、能量储存和转化、液体分离等领域。纳米通道的尺寸是影响液体浸润......