生物体的复杂性是由它们的基因编码的,但这些基因从何而来?据最新一期《美国国家科学院院刊》报道,芬兰赫尔辛基大学研究人员解决了围绕小分子RNA基因(microRNA)起源的悬而未决的问题,并描述了一种创造它们的DNA回文序列的机制。在适当的环境下,这些回文序列会进化成microRNA基因。
所有的RNA分子都需要回文的碱基序列,以将分子锁定在其功能构象中。重要的是,即使对于简单的microRNA基因,随机碱基突变逐渐形成这种回文序列的可能性也非常小。因此,这些回文序列的起源一直困扰着研究人员。
芬兰赫尔辛基大学生物技术研究所的专家们描述了一种机制,可瞬间产生完整的DNA回文序列,并从以前没有编码的DNA序列中创造出新的microRNA基因。
研究人员研究了DNA复制中的错误,并将其比作“文本打字”。DNA一次复制一个碱基,通常情况下,单个碱基复制错误就会造成突变。他们研究了一种造成更大错误的机制,比如从另一个文本中复制粘贴文本。
研究人员认识到,DNA复制错误有时可能是有益的。在RNA分子中,相邻回文序列的碱基可配对并形成类似发夹的结构,这种结构对RNA分子的功能至关重要。
研究人员决定将重点放在microRNA基因上,因为它们的结构简单,这些基因非常短,只有几十个碱基。它们必须折叠成发夹结构才能正常工作。通过对数十种灵长类动物和哺乳动物的全基因组的详细建模,研究人员发现,整个microRNA回文序列是由单一突变事件造成的。
通过关注人类和其它灵长类动物,研究人员证明,新发现的机制可解释至少四分之一的新microRNA基因起源之谜。由于在其他进化谱系中也发现了类似的病例,其起源机制似乎具有普遍性。研究人员表示,这项研究有助于理解生物生命的基本原理。
究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......
据27日《自然》杂志报道,英国伦敦大学学院(UCL)化学家通过模拟早期地球的条件,首次实现了RNA与氨基酸的化学连接。这一难题自20世纪70年代以来一直困扰着科学家,如今,这一突破性成果为解答生命起源......
究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......
基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......
神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......
美国芝加哥大学团队开发了一种更为灵敏的液体活检技术,该方法利用RNA而不是传统的DNA来检测癌症。这一创新方法在使用患者血液样本进行测试时,识别出早期结直肠癌的准确率达到95%,显著优于现有的非侵入性......
国际知名学术期刊《自然》北京时间7月2日夜间在线发表一篇基因组学论文称,研究人员从上埃及Nuwayrat地区一个古王国墓葬中提取到一名古埃及个体的全基因组测序数据,这些数据分析可追溯至古埃及第三至第四......
在一项研究中,科学家对埃及一座墓葬中的一名古埃及人进行了全基因组测序。这些数据可追溯至古埃及第三至第四王朝,揭示了其与北非及中东地区,包括美索不达米亚古人群的亲缘关系,为早期埃及人的遗传多样性研究提供......
近年来,环状单链DNA(CssDNA)因其稳定性高、免疫原性弱、可编程性强,成为基因调控、细胞治疗等医学合成生物学领域很有潜力的分子工具之一。近期,中国科学院杭州医学研究所研究员宋杰团队针对此前开发的......
随着信息技术的飞速发展,传统存储方式已经逐渐无法满足大数据时代的需求。在此背景下,DNA信息存储技术应运而生,通过利用DNA分子存储数据,已经被视为未来大规模数据存储的潜力介质。每克DNA能够存储数百......