氢能作为终极清洁能源可有效规避温室效应。近年来,化学链制氢作为高效灵活的能源转化与制备平台获得关注,但该技术对载氧体选择有严格要求,需同时具备较高的氧容量、可调控的反应活性以及在苛刻工况下依然能够保持结构完整等特征。
载氧体在晶格氧释放和恢复过程中发生烧结、团聚和失活,是制约化学链工艺大规模工业化的主要原因。载氧体发展至今,其结构从简单的宏观机械混合逐渐趋向于微观纳米调控,以提升活性和稳定性。核壳结构载氧体具备优异的热稳定性和机械强度,可以避免活性组分浸出。然而,惰性组分的引入降低了载氧体活性,且针对多级载氧体晶格氧的迁移转化以及金属离子的运动过程仍缺乏研究。如何精准调控、平衡载氧体活性和稳定性之间的“跷跷板”问题,已成为亟待解决的关键问题。
中国科学院广州能源研究所研究员黄振和东北石油大学教授李翠勤,设计并合成了系列具有精准外壳厚度、纳米级限域的多级核壳结构载氧体Fe2O3@SiO2,探究惰性载体厚度与空间结构对载氧体稳定性与传质速率的双重影响机制,以寻求化学链制氢过程中活性与稳定性的动态平衡。结果表明,薄壳层展现出优异的循环稳定性,连续30次氧化还原循环性能保持稳定;而厚壳层因反应过程生成大量的惰性Fe2SiO4导致快速失活。同时,研究通过聚焦离子束-透射电子显微镜和原位透射电子显微镜发现,惰性SiO2壳层的限域作用抑制了Fe2O3团聚行为。这一核壳结构与可控壳层厚度为具有空间结构的高效长寿命载氧体的设计合成提供了新思路。
相关研究成果发表在《能源化学》(Journal of Energy Chemistry)上。研究工作得到国家自然科学基金、广东省基础与应用基础研究基金等的支持。
氢能作为终极清洁能源可有效规避温室效应。近年来,化学链制氢作为高效灵活的能源转化与制备平台获得关注,但该技术对载氧体选择有严格要求,需同时具备较高的氧容量、可调控的反应活性以及在苛刻工况下依然能够保持......
氢能作为终极清洁能源可有效规避温室效应。近年来,化学链制氢作为高效灵活的能源转化与制备平台获得关注,但该技术对载氧体选择有严格要求,需同时具备较高的氧容量、可调控的反应活性以及在苛刻工况下依然能够保持......
氢能作为终极清洁能源可有效规避温室效应。近年来,化学链制氢作为高效灵活的能源转化与制备平台获得关注,但该技术对载氧体选择有严格要求,需同时具备较高的氧容量、可调控的反应活性以及在苛刻工况下依然能够保持......
美国麻省理工学院团队利用超薄半导体材料,成功研制出一种全新的纳米级3D晶体管。这是迄今已知最小的3D晶体管,其性能和功能可比肩甚至超越现有硅基晶体管,将为高性能节能电子产品的研制开辟新途径。相关论文发......
聚合物半导体是新一代柔性光电子产业的基础材料,在高柔性逻辑电路、可植入智能感知器件、热电发电与制冷器件等方面具有应用前景。化学掺杂可以精细调控聚合物半导体的导电性能和光电功能,并拓展材料的应用领域。近......
日本东京大学科学家最近利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶......
荷兰代尔夫特理工大学研究人员制造出世界上最小的流量驱动电机。受荷兰标志性风车和生物马达蛋白的启发,研究人员构建出一种通过DNA自我配置的流动驱动转子,可将电能或盐梯度的能量转化为有用的机械功。这一成果......
叶片中的水分调节对植物的健康至关重要,影响其生长和产量、易感性和抗旱性。叶子表面是植物中对水分管理最积极的地方。康奈尔大学(CornellUniversity)研究人员开发的一项突破性技术利用纳米级传......
目前,细胞表面工程技术通过修饰细胞表面,在微米级水平上精确调控生物材料和细胞之间的结合,形成微型水凝胶,极大促进了细胞疗法和组织工程的发展。但是,这些“微胶”厚度通常过厚且会可能损伤细胞活性和功能,而......
厦门大学杭纬课题组在Science子刊《科学进展》发文研究纳米级激光质谱成像新方法。厦门大学杭化学化工学院教授杭纬分析测试百科网讯2017年12月8日,厦门大学化学化工学院杭纬教授课题组在Scienc......