中国科学院分子植物科学卓越创新中心/植物生理生态研究所研究员何玉科研究组在The Plant Cell上,发表了题为Cytoplasmic HYL1 modulates miRNA-mediated translational repression的研究论文。该研究组发现,HYL1蛋白除了介导microRNA (miRNA)的转录后调控,还调控miRNA靶基因的翻译抑制。该发现丰富了miRNA生物合成和翻译调控的理论,将推动miRNA在植物遗传改良上的应用。
miRNA是一类广泛存在于真核生物中长约21 nt的小分子非编码RNA。植物中miRNA主要在细胞核中被DCL1、HYL1和SE组成的切割小体(Dicing body)加工而成,随后成熟的miRNA进入细胞质中,再以AGO1为中心的RNA沉默复合体(RISC)对靶基因进行剪切或翻译抑制。在细胞核中,HYL1是DCL1重要的互作蛋白,其参与的miRNA加工过程一直被认为是HYL1的主要生物学功能。该研究组长期从事拟南芥HYL1和同源的白菜BcpLH介导miRNA生物合成的研究。该研究中,科研人员证实HYL1蛋白也存在于细胞质中。为区分细胞质HYL1和细胞核HYL1的功能,科研人员将HYL1分别与强入核信号SV NLS40和强出核信号NES融合,分别构建了仅定位于细胞核和仅定位于细胞质的HYL1转基因植株。仅细胞核定位的HYL1能部分回复hyl1-2突变体的表型缺陷,而完全细胞质定位的HYL1也能部分回复hyl1-2的表型缺陷,表明细胞质中的HYL1具有一定的生物学功能。此外,完全细胞质定位的HYL1并不影响miRNA对靶基因的剪切,但改变了miRNA靶基因的蛋白水平。仅细胞核定位的HYL1只能部分回复hyl1-2突变体中靶基因蛋白水平。多项实验证明,细胞质HYL1能够促进翻译抑制过程,且依赖于miRNA。AGO1和AMP1是miRNA介导翻译抑制过程中的重要蛋白,细胞质HYL1能够与AGO1和AMP1互作,影响AGO1在多聚核糖体上的积累。综上所述,HYL1具有细胞核和细胞质双重定位,细胞质HYL1能够与AGO1和AMP1互作,通过调控AGO1在多聚核糖体上的累积,进而调控miRNA介导的翻译抑制过程(如图)。
美国加州大学旧金山分校科学家发现,大脑衰老背后隐藏着一种名为FTL1的关键蛋白。实验显示,过量FTL1蛋白会导致小鼠记忆力衰退、大脑神经连接减弱以及细胞反应迟钝。一旦阻断这种蛋白,老年小鼠就能恢复年轻......
中国科学院上海药物研究所研究员罗成、周兵、陈奕和华东师范大学研究员陈示洁合作,提出“强支点占据-杠杆干扰”(FOLP)的蛋白-蛋白相互作用(PPI)先导化合物设计策略,为PPI领域研究提供新的概念和方......
水稻作为最重要的粮食作物,为超过半数的世界人口提供主食。然而,水稻黑条矮缩病毒(SRBSDV)等病毒严重危害水稻生长,威胁粮食生产安全,解析病毒—水稻互作的分子机制对水稻病毒病的防控具有重要意义。近日......
记者从安徽农业大学获悉,该校王晓波教授团队联合中国农业科学院作物科学研究所邱丽娟、李英慧研究员团队,解析了关键基因对大豆种子油脂和蛋白比例(油蛋比)的调控机制,为高油或高蛋白大豆品种选育提供了新方向。......
中国科学院院士施一公团队解析了BAX线状/环状聚合物所共享的基本重复单元结构,解答了“死神”BAX究竟是如何让细胞走上死亡命运的不归路。6月27日,相关研究成果发表在《科学》。BAX多边形结构。课题组......
近日,广东省科学院动物研究所昆虫生态与害虫控制研究中心研究揭示了微小核糖核酸(miRNA)在白蚁免疫反应中的关键作用,为白蚁害虫的防控提供了新的科学依据。相关成果在线发表于《昆虫科学》(InsectS......
大约80%的植物病毒依赖媒介昆虫进行传播,媒介昆虫体内的病毒稳态依赖于病毒载量与昆虫免疫系统之间的动态平衡,从而确保虫媒的生存和病毒的高效传播。小RNA介导的RNA干扰(RNAi)是真核生物中普遍存在......
澳大利亚沃尔特和伊丽莎霍尔医学研究所团队在对抗帕金森病的斗争中取得重大突破:他们成功解开了一个长达数十年的谜团,确定了人类PINK1蛋白与线粒体结合的具体结构,为开发治疗帕金森病的新药开辟了新道路。这......
暨南大学生命科学技术学院教授邹奕团队在广东省重点研发项目、广东省自然科学基金等项目的资助下,研究发现转甲状腺激素蛋白或成术后认知功能障碍诊断新标志物,有望助力早期干预。近日,相关成果发表于《分子精神病......
过去几年里,单细胞蛋白质组学技术取得了长足发展,单细胞蛋白质组学逐渐走向成熟,后续有望广泛应用于肿瘤异质性分析、免疫学研究、发育生物学、神经科学以及精准医学等领域。然而,从技术发展成熟到实际场景应用分......