发布时间:2020-03-27 17:09 原文链接: 研究揭示森林生态系统尺度硝化作用速率

  过去半个世纪以来,人类活动向大气释放的活性气态氮急剧增加,从而导致了陆地生态系统氮沉降也随之增加。绝大多数森林植物生产力受氮供应限制。因此,氮沉降一定程度上会促进森林树木生长,但长期过量的氮沉降则会对森林生态系统产生不利影响,导致土壤酸化、养分流失、植物养分失衡、温室气体排放增加和生物多样性损失。硝化作用是微生物将铵态氮或可溶性有机氮转化为硝态氮的过程。铵态氮和硝态氮均是植物和微生物利用的主要氮形态,但硝态氮易于发生淋溶进入下游水体,从而引起土壤盐基养分的损失和下游水体的富营养化。硝态氮是反硝化作用(硝态氮逐步还原成氮气的过程)的底物,过多的硝态氮会增加反硝化作用的发生。硝化和反硝化作用是产生温室气体N2O的重要微生物途径。因此,硝化作用影响森林氮的有效性和组成,是生态系统氮循环过程关键环节之一。此外,集水区尺度上量化土壤硝化作用速率是量化反硝化作用速率的必要步骤之一(Fang et al. 2015. PNAS)。但由于森林土壤硝化作用的时空异质性,在生态系统尺度上量化硝化作用速率的问题一直难以解决。

  Greg Michalski等首次测定了大气沉降硝酸盐的17O自然丰度,发现大气沉降硝酸盐在形成过程中经与臭氧(O3)的相互作用获得了额外的17O(定义为17O盈余,用D17O表示,D17O = δ17O – 0.52*δ18O),D17O值为20 ~ 31‰(Michalski et al. 2003. Geophysical Research Letters)。硝酸盐进入土壤后,部分被植物或者微生物利用而消耗,但这些消耗过程都不会对剩余硝酸盐的D17O产生影响。硝化作用生成的硝酸盐中3个氧原子1个来自氧气,2个来自水,不存在17O盈余(即D17O为0‰)。因此,如果土壤硝化作用越强,那么对土壤中来自大气沉降硝酸盐17O盈余的稀释作用越强。也就是说大气沉降硝酸盐D17O是一种天然的示踪剂。根据这一原理,通过测定降水和溪水的硝酸盐D17O和降水硝酸盐量,利用同位素混合模型,方运霆等首次量化森林生态系统尺度上年硝化作用速率(Fang et al. 2015. PNAS)。然而,由于该硝化作用速率量化方法必须依赖硝酸盐17O的测定,目前世界上仅有少数实验室具备分析能力。因此,生态系统尺度上的硝化作用速率研究仍然很少,有关森林土壤硝化作用是否存在季节和年际变化,受什么因子控制等还不得而知。

  中国科学院沈阳应用生态研究所稳定同位素生态学组以中国科学院清原森林生态系统观测研究站的一个面积为536公顷的森林集水区为研究对象,于2014~2017年连续4年采集了降水和溪水样品,测定了样品中的硝酸盐含量和D17O,量化了清原森林生态系统尺度的硝酸盐输入、流失和土壤硝化作用速率 (图1,2)。研究表明,研究期间氮沉降量为17.0~21.4 kg N ha-1 yr-1(平均19.2 kg N ha-1 yr-1),其中硝态氮为6.6~7.4 kg N ha-1 yr-1(平均7.0 kg N ha-1 yr-1),占32~41%(平均36%)。降水硝酸盐D17O为18.3~32.7‰,溪水为-0.1~4.8‰(图2),说明降水硝酸盐的17O盈余进入土壤后被土壤硝化作用大大稀释。土壤硝化作用速率为71~120 kg N ha-1 yr-1 (平均94 kg N ha-1 yr-1),表现出较大的年际变化。另外,该研究还量化了土壤硝化作用的月动态,但未发现与土壤气温和降水之间的明确关系。氮流失量为4.2~8.9 kg N ha-1 yr-1(平均6.9 kg N ha-1 yr-1),高于判断温带森林是否达到氮饱和的临界值(5 kg N ha-1 yr-1)。利用硝酸盐氮氧同位素自然丰度法(Fang et al. 2015. PNAS)计算得到该集水区尺度气体氮损失为3.8 kg N ha-1 yr-1,占总氮损失(气态氮损失+氮流失,10.7 kg N ha-1 yr-1)的35%。生态系统尺度总氮损失占氮沉降输入(19.2 kg N ha-1 yr-1)的56%。综合来看,可初步判断所研究的森林生态系统表现一定程度氮饱和,但需要其他研究进一步证实。该研究显示,量化生态系统尺度硝化作用速率是揭示土壤氮内部循环的重要一步,其结果有利于揭示森林生态系统内部氮循环过程和氮状态,深化对森林氮循环的认识。

  该研究得到国家重点研发计划、国家自然科学基金项目、中科院前沿科学重点部署项目和国际团队项目等的支持。研究成果以Multiyear measurements on Δ17O of stream nitrate indicate high nitrate production in a temperate forest 为题,于3月24日正式在线发表于Environmental Science & Technology。博士黄韶楠为第一作者,研究员方运霆为通讯作者。

  图1. 清原站森林生态系统硝酸盐17O盈余和通量

相关文章

Ponzi实现开孔富勒烯选择性硝化的研究

多硝基富勒烯作为一种潜在的含能材料具有重要的研究价值。人们在多硝基富勒烯的合成探究中,逐渐发展了利用发烟硝酸、四氧化二氮(N2O4)等试剂来实现富勒烯硝化产物制备的合成方式,然而由于难以控制富勒烯骨架......

研究揭示森林生态系统尺度硝化作用速率

过去半个世纪以来,人类活动向大气释放的活性气态氮急剧增加,从而导致了陆地生态系统氮沉降也随之增加。绝大多数森林植物生产力受氮供应限制。因此,氮沉降一定程度上会促进森林树木生长,但长期过量的氮沉降则会对......

研究揭示森林生态系统尺度硝化作用速率

过去半个世纪以来,人类活动向大气释放的活性气态氮急剧增加,从而导致了陆地生态系统氮沉降也随之增加。绝大多数森林植物生产力受氮供应限制。因此,氮沉降一定程度上会促进森林树木生长,但长期过量的氮沉降则会对......

硝化反硝化耦合机制主导贫氮生态系统氧化亚氮脉冲排放

土壤氮转化过程影响生态系统生产力及土壤氮素的损失途径和潜力,微生物硝化和反硝化过程产生氧化亚氮(N2O)释放到大气中,使土壤成为大气N2O的主要来源,一般认为施肥农田土壤是强排放源,自然土壤则为弱排放......

末次冰期以来中纬度西风在轨道与千年尺度上的变化

西风作为全球尺度大气环流的主要组成部分,对动量、热能和水汽的搬运和分布具有重要作用,极大地影响着全球气候。尤其是在中纬度地区,西风激流的位置和强度在重塑降雨模式方面发挥了巨大的作用。然而,目前对中纬度......

浅谈曝气生物滤池硝化和反硝化工艺流程

曝气生物滤池集生物氧化和截留悬浮固体于一体节省后续二次沉淀池和污泥回流,在保证处理效果的前提下使处理工艺简化。图片来源于网络曝气生物滤池具有容积负荷高、水力负荷大、水力停留时间短、所需基建投资少、占地......

微米尺度异质结构超滑特性首获展示

清华大学郑泉水团队在超滑研究领域取得新进展,首次实验展示了微米异质(石墨和六方氮化硼单晶)界面中旋转稳定的结构超滑特性。该成果近日发表于《自然—材料》。摩擦是两个物体表面之间作相对滑移运动导致的能量消......

酸性土壤中硝化作用和硝化微生物研究取得进展

硝化作用是氮素循环过程中非常重要的一个环节,它包括将铵态氮氧化成亚硝态氮的氨氧化过程和将亚硝态氮氧化成硝态氮的亚硝酸盐氧化过程,参与这两个过程的功能微生物分别是氨氧化微生物和亚硝化微生物。传统的观点认......

上海天文台精确测量银河系中尘埃分布的尺度

银河是夜空中最壮美的景观。在银河繁星中,存在一些肉眼可见的“黑色星云”(图1)。这些“黑云”由恒星之外的中性气体和固体颗粒所构成,是新一代恒星的诞生地。这些固体颗粒被通称为星际尘埃。星际尘埃主要产生于......

上海天文台在双棒星系的形成与演化理论研究中取得进展

我们生活在银河系之中,曾经我们以为银河系是一个普通的旋涡星系,现在已知道它原来是一个棒旋星系。其实,大部分旋涡星系都像银河系一样,因星系盘自身的不稳定性而在星系中心形成由大量恒星聚集而成的“棒”状结构......