近日,中国科学院大连化学物理研究所研究员傅强和慕仁涛团队在氢溢流可视化研究方面取得进展。研究人员发现氧化物-金属界面结构对氢溢流过程具有重要影响,即通过构建氧化物/金属反转结构,可提升氢溢流速率和二氧化碳加氢反应性能。
氢活化和氢溢流是众多加氢反应的重要基元过程,对其有效调控是提高加氢催化反应性能的关键。此前,该团队通过构建氧化物表界面活性中心,调控氢气活化方式,并利用氢溢流形成的表面氢物种,提升加氢反应性能,继而通过氢溢流再生“M-O路易斯酸碱对”活性中心,实现水分子(H2O)有效活化。
在本次研究中,团队首先构建了Mn3O4/Pt(111)反转结构和Pt/Mn3O4负载结构。高压扫描隧道显微镜原位成像结果表明,Mn3O4/Pt(111)反转结构发生氢溢流所需氢气分压,比Pt/Mn3O4低两个数量级,这表明反转结构更有利于氢溢流。同时,理论研究显示,在Mn3O4/Pt(111)界面处,氢原子沿Pt–Mn–O路径扩散的能垒较低。进一步,研究人员基于模型体系研究结果,构建了MnOx/Pt/C反转催化剂和Pt/MnOx/C催化剂。在逆水气变换反应中,反转催化剂的二氧化碳转化率比Pt/MnOx/C催化剂提高了1.8倍。
这一研究揭示了氧化物/金属反转结构对氢溢流及二氧化碳加氢反应具有促进作用。
近日,相关研究成果以Mn3O4/Pt Oxide-on-Metal Inverse Catalyst Facilitates Hydrogen Spillover for CO2 Hydrogenation Reaction为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。研究工作得到国家自然科学基金委员会、科学技术部、中国科学院等的支持。
近日,中国科学院大连化学物理研究所研究员傅强和慕仁涛团队在氢溢流可视化研究方面取得进展。研究人员发现氧化物-金属界面结构对氢溢流过程具有重要影响,即通过构建氧化物/金属反转结构,可提升氢溢流速率和二氧......
近日,中国科学院大连化学物理研究所研究员傅强和慕仁涛团队在氢溢流可视化研究方面取得进展。研究人员发现氧化物-金属界面结构对氢溢流过程具有重要影响,即通过构建氧化物/金属反转结构,可提升氢溢流速率和二氧......
层状氧化物正极材料因高能量密度和易于规模化生产的特性,在锂离子电池和钠离子电池领域具有重要作用。得益于钠资源的广泛可得性以及在过渡金属元素选择上的高灵活性,无需依赖昂贵的钴和镍,可以采用成本效益更高的......
近日,中国科学院大连化学物理研究所包信和院士、研究员傅强团队在界面限域催化研究方面取得新进展。团队发现开放的TiO2等氧化物载体表面能够提供限域环境,并且驱动In2O3颗粒在二氧化碳加氢反应气氛中自发......
在重费米子、铜氧化物、铁基等非常规超导体中,电子通过相对运动克服库仑排斥,诱导自身配对产生超导电性,是目前已知的实现常压高温超导的唯一途径。因此,建立不同于常规电-声耦合配对机制的非常规超导理论,是探......
近日,南方科技大学深港微电子学院李毅达助理教授课题组在互补金属氧化物半导体(ComplementaryMetalOxideSemiconductor,CMOS)后道集成和氧化物半导体领域取得重要进展。......
美国明尼苏达大学双城分校领导的一个团队开发出了一种首创的突破性方法,可以更容易地用“顽固”金属制造高质量的金属氧化物薄膜。这项研究为科学家开发用于量子计算、微电子、传感器和能源催化的下一代新材料铺平了......
近日,中国科学院南海海洋研究所边缘海与大洋地质重点实验室研究员孙珍团队在南海中新世海相红层成因研究方面取得最新进展。相关成果发表于《冈瓦纳研究》(GondwanaResearch)。张哲博士为该论文第......
过渡金属层状氧化物(如LiNi1-x-yCoxMnyO2、LiCoO2)凭借高电压、高可逆容量等优点,在锂离子电池正极材料领域取得广泛应用。在反复充放电过程中正极材料颗粒由表及里发生副反应造成活性物质......
据韩国成均馆大学消息称,该校电子电气工学系研究团队成功开发了高耐久性柔性突触半导体元件。研究成果刊登在国际学术期刊《科学观察》上。近年来,物联网技术在便携式智能设备领域应用需求迅速增加,特别是柔性电子......