中枢神经系统是脊椎动物调控最复杂、最严谨的器官之一,控制着感觉感知、情绪调节和机体维持等基本神经活动,以及思维、认知和意识等高级神经活动。大脑最重要的特征之一就是能够存储大量的信息,即学习和记忆能力,在阿兹海默病等神经精神疾病的患者中,学习和记忆能力的异常是重要的临床表征之一。神经元之间相互形成的神经突触以及介导的信息传递是神经系统一个基本而又独特的存在,也是神经网络发挥生理功能的基础,其活性异常是神经系统疾病发生的重要原因之一。神经科学研究表明,学习记忆的物质基础是神经突触联系强度的变化,由此提出“突触可塑性”这一理论,即神经元之间突触联系强度可随着神经元活性的变化而改变。
长时程增强(long-term potentiation,LTP)是突触可塑性重要的表现形式之一,是目前研究学习记忆最重要的分子细胞模型。目前关于LTP研究主要集中于突触外兴奋性AMPA受体的转运机制,突触后分子调控机制不甚清楚。近日,中国科学院昆明动物研究所盛能印课题组与美国加州大学旧金山分校Roger Nicoll实验室合作,以AMPA受体基因条件性敲除小鼠为研究系统,构建GluA1-g-8融合性AMPA受体并通过胚胎宫内电转以替代内源AMPA受体,研究谷氨酸受体复合物与突触后PDZ支架蛋白的相互作用在LTP中的功能和机制。结合海马脑片和神经电生理等手段,研究发现外源AMPA受体的突触转运只受到所融合的辅基TARP g-8的调控;而AMPA/TARP受体复合物中与突触后支架蛋白PDZ结构域的结合位点,是该受体介导的突触传递和LTP表达所必需的。进一步研究发现,谷氨酸受体的另一家族成员kainate受体与其辅基Neto蛋白所形成的受体复合物,其突触转运和LTP表达同样需要与突触后支架蛋白PDZ结构域的相互作用。研究结果表明,无论是由何种谷氨酸受体所介导,LTP表达的突触后机制很保守且由共同的机制所调控;在LTP过程中,突触后PDZ支架蛋白是主要功能靶点,而谷氨酸受体的突触转运则可能为被动协同过程。该研究揭示了突触可塑性长时程增强的突触后分子机制,为进一步阐明学习记忆的分子机制以及相关神经精神疾病的发病机理提供了重要理论基础。
相关研究成果以LTP requires postsynaptic PDZ-domain interactions with glutamate receptor/auxiliary protein complexes为题,发表在《美国国家科学院院刊》上。昆明动物所研究员盛能印为论文第一作者,并与美国加州大学旧金山分校教授Roger Nicoll为共同通讯作者。该研究得到了国家自然科学基金委、中科院战略性先导科技专项(动物复杂性状的进化解析与调控)、中科院率先行动“百人计划”的资助。

在Gria1fl/fl Gria2 fl/fl Gria3 fl/fl条件性敲除小鼠海马CA1神经元中敲除AMPA受体、将其替换为GluA-g-8融合受体或PDZ结构位点缺失的GluA-g-8D4突变受体后,神经电生理分别考察其对突触传递(A-C)和突触可塑性LTP(D-E)的影响。
此前已有研究发现,睡眠不足会对大脑造成严重破坏,导致学习能力下降、记忆混乱等。但其背后的机制仍存在许多不确定性。现在,一项针对小鼠的研究表明,上述睡眠不足导致的结果,部分可能源于脑细胞相互连接方式的改......
4月8日,中国科学院生物物理研究所赵岩研究组在国际学术期刊《自然-结构与分子生物学》上发表研究论文。该研究利用单颗粒冷冻电镜技术,首次解析了高亲和力胆碱转运蛋白CHT1(high-affinitych......
确定空间信息的表征机制是探讨空间信息处理的核心任务之一,为学习记忆中空间场景处理原则提供了重要启发。12月14日,中国科学院深圳先进技术研究院脑认知与脑疾病研究所研究员王成团队,联合南方科技大学生命科......
16日,从中国科学技术大学获悉,该校郭光灿院士团队孙方稳课题组与合作者合作,制备了基于二氧化钒相变薄膜的类脑神经元器件,并利用金刚石中氮-空位(NV)色心作为固态自旋量子传感器,探测了神经元突触在外部......
图片来源:EyeofScience/SciencePhotoLibrary科学家绘制了第一张完整的昆虫大脑图谱,包括所有神经元和突触。这是理解大脑如何处理感官信息流并将其转化为行动的里程碑式成就。相关......
近日,MolecularBiologyandEvolution在线刊发了中国科学院院海洋研究所贝类遗传与进化研究团队关于牡蛎温度适应进化机制的研究论文(Cis-andtrans-variationso......
突触是神经元信号传递的关键结构,由信号输出的突触前膜和信号输入的突触后膜组成。突触前膜蕴含大量包裹了神经递质的突触囊泡,这些囊泡聚集在突触前膜的活性区,一旦动作电位到达突触前膜,停泊在活性区的突触囊泡......
大脑中神经元之间的通信通常与电化学信号传导有关。在这里,我们揭示了神经元也可以通过树突棘扩大产生的力进行交流。这种力与肌肉收缩相当,可能是学习和记忆的基础,这表明大脑功能比以前想象的更机械。图1:通过......
表型可塑性是生物体应对快速变化环境的重要适应机制。其中,母体效应是一种特殊的表型可塑性,指母体所经历的环境修饰子代植株的表型及其对环境适应性的现象,这种代间的可塑性可能是缓冲后代免受环境胁迫的有效方式......
从小狗的叫声到雨滴打在窗户上的声音,我们的大脑每秒钟都会收到无数的信号。大多数时候,我们不理睬无关紧要的线索---苍蝇的嗡嗡声、树上树叶的轻柔沙沙声---而注意重要的线索---汽车喇叭声、敲门声。这使......