着丝粒是染色质上一段结构与功能高度特化的区域,在细胞分裂期指导动粒的组装,并在纺锤体的牵拉下实现姐妹染色单体的分离。CENP-A是组蛋白H3在着丝粒区的变体,是着丝粒区建立和发挥功能的关键性的表观遗传因子。CENP-A通过招募下游CCAN蛋白家族发挥其功能。CENP-N是CCAN蛋白家族中最重要的成员之一,处在CCAN蛋白家族中的核心位置,被CENP-A直接招募并且进一步招募下游其他CCAN蛋白。
2011年,中国科学院生物物理研究所的许瑞明课题组与李国红课题组合作解析了人源CENP-A与其装配因子HJURP复合物的晶体结构,揭示了CENP-A分子上的Ser68残基为HJURP识别的关键位点(Hu et al., Genes & Development, 2011)。
2015年初,李国红课题组的前期研究发现了CENP-A分子的Ser68的磷酸化/去磷酸化参与调节细胞G1期CENP-A在着丝粒区的装配(Yu et al., Development Cell, 2015),清楚地揭示了CENP-A如何装配到着丝粒区。
在以上研究的基础上,李国红课题组又对CENP-A装配到着丝粒区后如何调节染色质结构及发挥着丝粒功能进行了重点研究。利用实验室前期建立的30nm染色质纤维体外组装和结构分析等技术平台(Chen et al., Genes & Development, 2013; Song et al., Science, 2014),进一步研究了着丝粒特异变体CENP-A对30nm染色质纤维结构的调控,结果揭示CENP-A染色质呈现一种不同于常规H3染色质的独特的“双排结构”。
李国红课题组还利用生物化学和细胞生物学方法发现,CENP-A的RG loop(CENP-A特有的Arg80/Gly81两个氨基酸)对CENP-A染色质形成“双排结构”非常关键,并且还是CENP-A招募CENP-N的关键性位点。有趣的是,CENP-N只能够与结构开放的CENP-A染色质结合,而结构紧密的“双排”CENP-A染色质则可以抑制CENP-N的结合。进一步研究发现随着细胞周期中DNA的复制,着丝粒区CENP-A染色质结构由G1期的紧密状态转变为S期的开放状态,从而使CENP-N在S期被招募并装配至着丝粒CENP-A染色质上。综合以上结果,李国红课题组提出了着丝粒区染色质结构周期性的变化可以调节RG loop在CENP-A染色质上的“暴露”或“隐藏”,从而调节CENP-N周期性地装配至着丝粒,进而介导着丝粒的功能,为揭示表观遗传因子CENP-A在着丝粒染色质高级结构建立中的功能以及如何招募下游CCAN蛋白并完成着丝粒功能提供了答案。
5月5日,Genes & Development 杂志在线发表了李国红课题组关于着丝粒区染色质高级结构和功能的这一最新研究成果。
该项目得到了国家自然科学基金委、科技部“973”计划和中国科学院的基金支持。该研究的通讯作者为李国红,房俊男(博士研究生)为第一作者,该研究还得到了生物物理所许瑞明课题组的帮助与支持。
图例:着丝粒区CENP-A染色质高级结构的动态变化调控细胞周期中CENP-N的招募与装配
记者近日获悉,中国专家团队首次揭示了一种在哺乳动物细胞中控制染色质分区以及近着丝粒异染色质形成、维持和稳态遗传的新机制。北京时间15日深夜,由华东师范大学翁杰敏教授团队与中国科学院生物化学与细胞生物学......
华东师范大学教授翁杰敏团队与中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员陈德桂团队合作,揭示了哺乳动物细胞近着丝粒异染色质形成、维持和稳定遗传的新机制,对异染色质调控机制有了......
染色质是真核细胞中DNA包装和基因表达调控的核心结构。核小体作为染色质的基本单位,与各种蛋白质的相互作用决定了基因表达的精确调控。理解核小体结合蛋白的结构特征和相互作用机制,对揭示表观遗传调控、疾病发......
法国斯特拉斯堡大学AdamBen-Shem团队近期取得重要工作进展。他们报道了人TIP60-C组蛋白交换和乙酰转移酶复合物的结构。相关论文于2024年9月11日发表于国际顶尖学术期刊《自然》杂志上。据......
中国科学院生物物理研究所朱平研究组和李国红研究组合作,揭示了连接组蛋白H5介导的核小体结合和染色质折叠和高级结构形成机制。相关论文近期发表于《细胞研究》。在真核生物中,基因组DNA被分层包装到细胞核内......
西安交通大学叶凯教授带领信息与生物医学交叉团队,开发了针对基因组超复杂区域的计算方案,成功绘制了四种罂粟属物种的着丝粒序列图谱。7月30日,相关研究成果发表在《细胞-基因组学》上。这四种罂粟属物种包括......
普通小麦是主要的粮食作物之一。普通小麦的形成涉及三个祖先种的两次远缘杂交和异源多倍化过程。小麦基因组大小约16Gb,包含A、B和D三套既高度同源又有明显分化的亚基因组(其中,90%以上为重复序列)。普......
9月13日,中国科学院生物物理研究所朱平研究组在国际期刊《细胞报告》(CellReports)在线发表论文,利用冷冻电子断层三维成像方法,揭示了体外组装和体内染色质纤维一种普遍存在的双螺旋折叠模式。在......
调控基因组元件的高阶三维(3D)组织为基因调控提供了拓扑基础,但尚不清楚哺乳动物基因组中的多个调控元件如何在单个细胞内相互作用。2023年8月28日,北京大学汤富酬团队在NatureMethods(I......
在真核细胞分裂过程中,染色质结构的重新建立对于维持基因组完整性和表观遗传信息传递至关重要。DNA复制一方面破坏母链DNA的亲本核小体,另一方面新生核小体必须在DNA子链上重建。染色质组装因子CAF-1......