发布时间:2023-06-16 11:17 原文链接: 祝贺!中国科学家组团攻关,取得重大成果

日前,由复旦大学、西安交通大学等国内26个科研单位联合开展研究,绘制出了基于36个族群的中国人泛基因组参考图谱,相关成果于北京时间14日在国际权威学术期刊《自然》杂志发表。这也是我国科学家首次自主进行本国人群全景图谱式泛基因组研究所取得的第一个重大成果。


图片.png


基因研究是当代生物学领域的重要方向,人类的基因组包含了三万个以上基因在内的30多亿碱基对,其纷繁复杂的作用关系我们目前还知之甚少。从上个世纪末开始,科学家联合开展人类基因组研究,但鉴于当时的技术条件,只能依据极少个体描绘出一种简单化基因组草图。


复旦大学教授徐书华介绍,第一,当时的构建主要还是代表了以白人基因组信息为重点和主要来源的一个参考图谱;第二,我们研究人现在的复杂结构变异,用一个单一的线性参考基因组,是很难刻画和判别我们的这些多样性,我们的基因组特征。


随着科学进步,泛基因组研究目前成为生命科学的新方向,相比过去片段化、单一维度的局限,它相当于要绘制一幅包含人类全部遗传信息的全景式多维度图谱。我国科学家组团攻关,力争使中国在这一前沿领域不再落后于人,这次独立进行的本土人群泛基因组参考图谱绘制,科研进度基本与国外持平,有利于建立自主可控的人类基因组资源、培养自己的核心技术力量。


在第一期参考图谱绘制中,我国科学家通过引入新技术新算法,选取有代表性和覆盖性的样本,在原有人类基因组的基础上新获取了1.9亿个碱基对新序列,包含近600万个变异,对于探究中国人群基因组核心特征具有重大意义。


据介绍,这项研究有助于更加清晰地揭示中华民族的历史发展脉络,对于华夏文明探源、族群遗传演进等研究都有重要价值。而进一步掌握本国人群的遗传密码,则在发展精准医学和前沿生物技术,保障人民健康,维护国家安全等各个方面,都有着基础作用和远景意义。




相关文章

因美纳推出5碱基解决方案以驱动多组学发现,开启基因组与表观基因组的同步洞察

• 在美国人类遗传学会(ASHG)年会上,因美纳5碱基解决方案的早期试用客户——伦敦健康科学中心研究所将展示该技术在加速罕见病病例解析方面的强大潜力。• 因美纳专有的5碱基化学技术......

许瑞明研究组合作揭示人逆转座子LINE1靶向整合基因组的重要机制

人类基因组中存在大量具有"跳跃"能力的逆转座子(retrotransposon)序列。在胚胎发育早期、免疫和神经系统等特定阶段和环境下,它们会被激活,发挥重要生理功能;在病毒感染、......

突发!三家生物技术与生命科学企业被美国列入实体清单

9月12日,美国商务部工业和安全局(BIS)在联邦公报上发布一项最终规则,根据这一规则,BIS修订了《出口管制条例》(EAR)在实体清单中增加了32个实体,其中中国实体23家。美方称这些公司或机构存在......

高精度完整基因组助橡胶育种驶入“快车道”

橡胶树是天然橡胶的主要来源。“橡胶树育种面临的主要困难在于周期长和效率低,通过常规育种方法将多抗、高产性状聚合往往需要30~40年。”中国热带农业科学院橡胶研究所研究员程汉告诉《中国科学报》。然而,目......

小麦野生近缘种基因组“密码”被破解

记者宋喜群、冯帆从山东农业大学获悉,该校农学院教授孔令让研究团队首次组装了小麦远缘杂交常用物种中间偃麦草和鹅观草染色体水平的高质量基因组序列,解析了二者基因组结构差异与独立多倍化演化路径,对两者携带的......

烟草分枝发育的“开关基因”被发现

近日,中国农业科学院烟草研究所烟草功能基因组创新团队发现烟草分枝发育“开关基因”,预示着未来作物株型调控有了新靶点。相关研究成果发表在《植物生物技术》(PlantBiotechnologyJourna......

新研究破译薇甘菊入侵基因密码

薇甘菊作为全球十大最具危害的恶性入侵杂草之一,以其惊人的繁殖速度和强大的环境适应性,在亚洲、太平洋地区及中国华南地区造成严重生态破坏。然而,其基因组层面的适应性进化机制长期未被系统解析,制约了科学防控......

研究开发出酵母泛基因组数字模型与代谢网络分析方法

近日,中国科学院大连化学物理研究所研究员周雍进团队与上海交通大学副教授鲁洪中合作,在酵母系统生物学研究中取得新进展。研究团队通过整合分析全球1807株酿酒酵母菌株的基因组与生态位数据,构建了高覆盖度的......

基因组大数据还原野猪横跨欧亚的百万年迁徙历程

近日,中国农业科学院农业基因组研究所农业基因编辑技术创新团队深入解析了中亚野猪种群在跨越欧亚大陆百万年的迁徙历程中适应环境的独特遗传密码,为理解大型哺乳动物如何应对环境变化提供了全新视角。相关研究成果......

基因组密码被解锁:深度学习模型破解非编码区奥秘

人类基因组中超98%的遗传变异位于非编码区,这些变异通过调控染色质可及性、三维构象、剪接加工等多种分子机制影响基因表达,最终导致疾病发生。由于调控机制的复杂性和细胞类型特异性,目前解读非编码变异的分子......