发布时间:2016-05-04 14:03 原文链接: 科学家揭示线粒体钙离子单向转运蛋白MCU的结构机制

  5月3日,国际学术期刊《自然》(Nature)在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所国家蛋白质科学中心(上海)周界文研究组及哈佛医学院Vamsi Mootha 研究团队的研究论文“Architecture of the Mitochondrial Calcium Uniporter”。该研究采用核磁技术结合电镜技术首次揭示了线粒体钙离子单向转运蛋白MCU(Mitochondrial Calcium Uniporter)跨膜核心区域的三维结构,是迄今为止使用核磁共振技术解析出的最大的离子通道结构。研究表明,MCU形成的是同源五聚体,与以往报道的其他钙离子通道的结构截然不同,对钙离子的选择机制和转运机制具有其独特性。

  钙离子参与一切生命活动过程,是生命体不可缺少的离子。MCU是线粒体摄入钙离子的重要分子机器,对线粒体的能量代谢和维持细胞生存起着关键作用。早在50多年前科学家就发现了线粒体对钙离子的吸收作用,但直到2011年介导钙离子进入线粒体的单向转运体才被美国Mootha实验室和意大利的Rizzuto实验室正式发现。令人惊讶的是,线粒体吸收钙离子不是简单地由单个蛋白转运,需要由多个蛋白质形成的复合体完成。跨膜MCU是这个蛋白质复合体的中心,位于线粒体内膜,其它调控蛋白包括MICU1、MICU2、MCUb、 EMRE。因此,MCU转运钙离子是一个高度复杂并受到严格控制的过程。如何在分子水平上揭示MCU的结构基础,阐明MCU转运钙离子的本质,将对线粒体内稳态的理解和线粒体相关疾病的治疗具有重要意义,并将拓展对离子通道的认识和理解。

  MCU作为近年来科学界的重要发现,国内外顶尖科研团队纷纷开展了对其分子基础的研究,而MCU体系的复杂性为这一问题的解决带来了巨大的挑战。在国家蛋白质科学中心(上海)研究员周界文和丛尧的共同指导下,博士研究生董颖利用国家蛋白质科学研究(上海)设施(简称“上海设施”)电镜分析系统,通过负染电镜的方法获得了MCU蛋白的整体形貌,发现MCU形成了一个“花瓶形”的同源五聚体,然而MCU精确的结构信息仍然缺乏。为了攻克这样一个整体分子量达到90 kDa以上、非常有挑战性的蛋白质,周界文继续带领其团队研发了一整套高效的膜蛋白核磁技术,充分利用了上海设施的高场核磁谱仪,解析了MCU高分辨率的核磁结构,清楚地揭示了MCU中钙离子特异性选择的通道入口。哈佛医学院的Vamsi Mootha团队进一步用功能实验验证了结构中观察到的重要位点对MCU的钙离子转运非常关键。此外,国家蛋白质科学中心(上海)研究员欧阳波在蛋白样品的制备和数据分析上提供了很大的帮助,核磁系统的高级工程师刘志军协助采集了一系列高质量的核磁图谱,电镜系统的高级工程师孔亮亮悉心指导了电镜仪器和软件的使用,使得该研究得以顺利完成。

  上海设施自2014年5月开放至今,核磁和电镜分析系统累计服务用户课题超过210个,为多项国家科技战略先导专项、“973”和“863”项目等提供科研保障和技术支撑。截至2016年4月,上海设施用户已经在Nature、Nature子刊、JACS、PNAS 等国际期刊上发表了超过12篇文章,为各领域科学研究起到重要的推动作用。核磁和电镜分析系统现在正全面开放运行。

  该研究工作受到中科院战略性先导科技专项(B类)、国家科技部、国家科技重大专项、国家自然科学基金委以及上海市科委基础研究项目的经费资助,并得到国家蛋白质科学研究(上海)设施核磁系统以及电镜系统的大力支持。

  线粒体钙离子单向转运体MCU的通道结构。(A) 单颗粒重组获得的负染电镜图;(B) 钙离子转运通道示意图;(C) MCU五聚体的核磁结构示意图;(D)MCU单体的结构组成。

相关文章

从细胞能量站出发,重构人类健康新图景

随着生命科学日益精细化,人类对健康的追求已深入至细胞层面。作为细胞的“能量工厂”,线粒体这一微小细胞器的重要性日益凸显,它不仅为生命活动提供能量,更调控着细胞生死,与神经退行性疾病、心血管疾病、代谢综......

“线粒体双相时钟”模型为器官配备专属“衰老GPS”

中国科学院上海营养与健康研究所研究员李昕研究组,通过解析人体多器官线粒体突变的“衰老图谱”,提出“线粒体双相时钟”模型,揭示了线粒体通过两种截然不同的模式编码器官衰老,进而同时编码了随机性和确定性衰老......

中国科学家实现线粒体致病突变体内原位纠正

华东师范大学教授李大力、刘明耀团队联合临港实验室青年研究员陈亮团队,开发出高性能线粒体腺嘌呤碱基编辑器(eTd-mtABEs),并利用eTd-mtABEs成功构建了感音神经性耳聋和Leigh综合症大鼠......

研究揭示人体器官衰老“线粒体时钟”

线粒体通常被认为是远古细菌与真核细胞共生演化的产物,其拥有独立的基因组,是细胞的能量工厂。然而,线粒体基因组在生命过程中不断积累突变,其突变率远高于细胞核DNA,这些突变或与衰老、疾病密切相关。近日,......

短短一周体重暴跌30%Nature:少吃了这种氨基酸

大约40%的美国人口和全球六分之一的人患有肥胖症,全球发病率激增。各种饮食干预,包括碳水化合物、脂肪和最近的氨基酸限制,都被用来对抗这种流行病。2025年5月21日,美国纽约大学EvgenyNudle......

纳米诱导剂通过线粒体自噬重塑肿瘤免疫微环境

CD8T细胞是免疫系统中的细胞毒性淋巴细胞,能够通过释放细胞毒素并诱导靶细胞死亡,有效清除被感染或发生异常的细胞。作为免疫治疗的前沿手段,CD8T细胞疗法已取得突破性进展。然而,肿瘤微环境常通过抑制性......

线粒体嵌合基因调控棉花细胞质雄性不育的作用机制

近日,中国农业科学院棉花研究所棉花高产育种创新团队揭示了线粒体嵌合基因orf610a通过破坏ATP合酶组装进而导致棉花不育系花粉败育的作用机制。相关研究成果发表在《植物生物技术杂志(PlantBiot......

研究发现调控线粒体趋核分布的关键因素

中国科学院广州生物医药与健康研究院研究员刘兴国团队与广州医科大学副教授项鸽团队研究发现调控线粒体趋核分布的关键因素,并揭示了线粒体趋核分布通过激活Wnt/β-catenin信号通路,而调控间充质-上皮......

线粒体应激调控干细胞命运的“线粒体遇见”新模式被发现

中国科学院广州生物医药与健康研究院刘兴国团队与广州医科大学应仲富团队等发现,线粒体未折叠蛋白反应(UPRmt)在多能干细胞命运中通过c-Jun调控组蛋白乙酰化,进而影响间充质-上皮转化(MET)的新模......

西湖大学连发两篇Nature破解复杂疾病细胞地图与线粒体转运之谜

描述疾病相关细胞的空间分布对于理解疾病病理学至关重要。近日,西湖大学杨剑团队在Nature在线发表题为“Spatiallyresolvedmappingofcellsassociatedwithhum......