发布时间:2019-12-24 15:47 原文链接: 科学家解析链霉菌高产菌株高效绿色构建

  华东理工大学生物工程学院生物反应器工程国家重点实验室张立新教授与中国科学院微生物研究所王为善研究员、中国农业科学院植物保护研究所向文胜研究员等合作,在链霉菌胞内三酰甘油(TAGs)降解机理研究中取得突破性进展。相关研究成果以长篇论文形式在线于《自然—生物技术》。

  该论文国际审稿人评价:这是70年来首次在代谢水平上清晰阐明链霉菌初级代谢到次级代谢的代谢转换机制并进行工程应用。

image.png

图片来源于网络

  聚酮类药物是链霉菌产生的一类重要次级代谢产物,它的生物合成过程受到严格调控,只有在菌体生长进入稳定期才大量合成。然而从初级代谢到次级代谢的能量池和调控开关是什么,一直是困扰科学家的重要科学问题。

  针对这一亟需解决的科学问题,该交叉联合攻关团队首次解析了链霉菌胞内三酰甘油(TAGs)在衔接初级代谢和聚酮合成过程中起着关键作用:TAGs在初级代谢阶段大量积累,当菌体生长进入稳定期开始合成聚酮时,TAGs则开始降解;胞内TAGs的降解不但能为聚酮合成提供必要的前体和还原力,还能够通过影响胞内还原力的水平,调节更多的碳流转向聚酮合成。

  同时,研究人员设计了一种新的“TAG动态降解”工程策略,实现4种链霉菌工程菌中聚酮化合物产量的大幅提升,尤其是阿维链霉菌工程菌在180立方米发酵罐上的阿维菌素发酵单位提升50%的重大突破。

  该工作是国际上首次解密链霉菌聚酮合成至关重要的代谢流量调控机制;并且,该机制可被转化为理性育种简便通用的强有力手段,在多种(工业)链霉菌多种聚酮化合物上都体现出惊人的效果。

  “这一成果将极大地推动链霉菌乃至其他微生物聚酮合成代谢工程的进步。”张立新表示,这一研究为深入揭示链霉菌中TAGs降解和聚酮类药物合成的代谢机制,进而充分利用可再生TAGs资源,实现聚酮类药物乃至其他次级代谢生物活性产物高效、绿色、智能的生物制造开辟了新思路。


相关文章

科学家合成第二种可在常温条件下研究的环碳

英国牛津大学的研究人员成功合成了一种新型全碳分子——环[48]碳(C48)。这是继35年前合成的富勒烯(C60)以来,第二种能够在常温条件下进行研究的全碳分子。这一突破可能为新的电子和量子技术带来极其......

链霉菌天然产物沉默基因簇激活方法开发获进展

近日,中国科学院南海海洋研究所研究员张长生团队在国家重点研发计划、国家自然科学基金等项目的资助下,在链霉菌天然产物沉默基因簇的激活方法开发中取得新进展。相关成果发表于《代谢工程》(MetabolicE......

我国学者发现植物防御激素水杨酸合成新通路

图种子植物中水杨酸合成的完整通路在国家自然科学基金项目(批准号:32330008、32300255)等资助下,四川大学张跃林团队完整解析了植物中一条全新的水杨酸合成通路“PAL/BSH途径”,并证明该......

新机理实现天然产物药物合成效率与产量双突破

链霉菌是生产天然产物药物的重要细胞工厂,超过2/3的抗生素来源于链霉菌。近日,中国农业科学院植物保护研究所微生物天然产物农药创新任务在《国际生物大分子杂志》(InternationalJournalo......

定量合成生物学发现自然应对传染病的新策略

传统观点认为,携带病毒的生物的迁徙一般会加速病毒的传播。但最近有生态学研究表明,迁徙对病毒传播有抑制作用,北美帝王蝶就是一个典型例证。长距离迁徙的帝王蝶相较于不迁徙的同类,感染寄生虫病的几率要低得多。......

整合不同合成方法,科学家突破复杂糖链制备难题

6月6日,中国科学院上海药物研究所研究员李铁海课题组通过整合化学合成与酶促合成方法,实现了65个磺酸化和非磺酸化神经节苷脂寡糖所组成糖库的有效合成,并采用高通量的糖芯片技术解析了该寡糖库与多种疾病相关......

对称二硒醚及不对称单硒醚实现结构多样化合成

西安交通大学药学院魏晓峰教授团队利用易得的有机卤化物及硒粉为起始原料,镁作为活化试剂,通过机械化学方法实现高活性有机硒格式试剂的原位制备并率先在国际上通过近边X射线吸收精细结构谱(NEXAFS)对反应......

我国科研团队创新催化剂合成方法,实现高效制甲醇

记者2月24日从江南大学获悉,该校化学与材料工程学院刘小浩教授团队采用光诱导—邻近沉积方法,通过精确控制双原子位点的距离,产生优异的协同催化效应,实现二氧化碳加氢近100%选择性生成甲醇,且生成甲醇的......

突破性合作!Evonetix与AnalogDevices共建基因合成工厂

Evonetix与模拟器件公司AnalogDevices签署协议,扩大热控酶促DNA合成技术的生产能力 NEWYORK-英国合成生物公司Evonetix周三表示,已与半导体制造商Analog......

我国科学家实现二氧化碳到糖精准全合成

糖是人类生命活动及日常生活中重要物质,也是当今工业生物制造的关键原材料。迄今为止,人类对糖的获取主要依赖于植物类生物质资源。然而,这种传统的“二氧化碳-生物质资源-糖”的加工过程,受到植物光合作用能量......