发布时间:2020-06-03 10:40 原文链接: 细胞外囊泡(细胞微粒、外泌体)检测(一)

细胞外囊泡

细胞外囊泡(Extracellular Vesicles, EVs)是指从细胞膜上脱落或者由细胞分泌的双层膜结构的囊泡状小体,直径从40nm到1000nm不等。胞外囊泡主要由微囊泡(Microvesicles,  MVs)和外泌体(Exosomes, Exs)组成,微囊泡是细胞激活、损伤或凋亡后从细胞膜脱落的小囊泡,直径约为100nm – 1000nm;

外泌体由细胞内的多泡小体(multivesicular bodies)与细胞膜融合后以外分泌的形式释放到细胞外,直径约为40nm - 100nm。细胞外囊泡广泛存在于细胞培养上清以及各种体液(血液、淋巴液、唾液、尿液、精液、乳汁)中,携带有细胞来源相关的多种蛋白质、脂类、DNA、mRNA、miRNA等,参与细胞间通讯、细胞迁移、血管新生和免疫调节等过程。在糖尿病、心血管疾病、艾滋病、慢性炎症疾病以及癌症中都发现细胞外囊泡水平的升高,它们很有可能成为这类疾病的诊断标志物,因此,对细胞外囊泡进行准确的定性和定量研究显得尤为重要。
 
细胞外囊泡的检测方法

目前细胞外囊泡(EVs)的检测方法主要有扫描电子显微镜、原子力显微镜、动态光散射技术、纳米微粒追踪分析术(NTA)、流式细胞仪和ELISA等,由于通量高、用时短、操作简单,ELISA和流式细胞仪是比较常用的方法。ELISA方法容易受其他可溶性抗原的干扰,而且无法知道囊泡的大小、数量等信息;流式细胞仪不仅可以检测囊泡的大小、数量,而且通过细胞特异的标记物染色可以检测囊泡的来源,将囊泡进行分类,因此,流式细胞仪理论上是进行囊泡快速、高通量、多参数检测的最优选择。然而,传统流式细胞仪针对的样本主要是细胞,散射光的检测极限通常是300-500nm,而大多数细胞外囊泡的直径都在300nm以下,由于无法与背景噪音区分,直径小于300nm的细胞外囊泡很难被检测到,因此,囊泡数量往往被低估,检测结果自然也不准确[1]。

Apogee流式细胞仪的三大优势

(1)最灵敏的散射光分辨率

英国Apogee公司的A50-Micro突破传统流式细胞仪的检测极限,优化的光学模块和优异的散射光检测能力使得A50-Micro具有无法匹敌的灵敏度(<100nm)和最好的光散射分辨率(10nm)。图1展示的是A50-Micro与传统流式细胞仪(F500)及一些新型流式细胞仪(Gallios、Influx)的技术对比[1],通过前向角散射光FC500只能勉强区分0.5μm和0.9μm的微珠,0.5μm以下的微珠则完全无法区分;Gallios和Influx在散射光检测能力方面有所提高,可以区分0.3μm和0.5μm的微珠,但0.3μm以下的微珠还是无法区分;而Apogee A50-Micro可以轻松地将0.14μm的微珠和0.3μm的微珠分成两个群(Fig 1.A)。从前向角散射光和侧向角散射光的散点图中可以看到,无论是FC500还是Gallios或Influx都只能部分的将0.3μm的微珠与背景噪音区分开,而A50-Micro可以清晰地将0.3μm的微珠与背景噪音完全区分开(Fig1.B中绿色数据点),并且只有A50-Micro可以检测到0.14μm的微珠(Fig1.B中紫色数据点)。这些结果说明,利用Apogee A50-Micro突出的高灵敏度和分辨率,我们可以轻松地将直径相差10nm以上的细胞外囊泡样本进行分群、计数、分析。另外,多达9通道荧光检测器,可以灵活使用细胞外囊泡特定抗原荧光抗体进行囊泡来源、数量的精确分析。Apogee A50-Micro是市场上唯一能够通过散射光检测小至100nm小颗粒的流式细胞仪,在细胞外囊泡的检测上优于任何一个竞争对手。


Figure 1. Technological improvement in forward scatter (FS) for microparticle (MP) measurement: (A) Beads resolution improvement: FS distribution of a blend of fluorescent latex beads (0.1/0.14, 0.3, 0.5 and 0.9 μm) with a threshold on fluorescence. (B) Background noise reduction: Scatters dot plot showing blue (0.9 μm beads), red (0.5 μm beads), green (0.3 μm beads) and violet (0.1/0.14 μm beads) beads with a FS threshold. Grey dots are background noise.
 


相关文章

它们“非一般”的生存策略挑战了经典遗传学理论

在生命的微观世界里,细胞分裂时有着严格的染色体分配原则。按照经典遗传学和细胞生物学理论,细胞有丝分裂或减数分裂后,每个子细胞核都应该至少获得完整的一套单倍体染色体,这样才能保证细胞正常发育和发挥功能。......

上海市2025年度关键技术研发计划“细胞与基因治疗”拟立项项目公示

根据市科技计划项目管理办法有关规定,现将上海市2025年度关键技术研发计划“细胞与基因治疗”拟立项项目予以公示。公示链接:http://svc.stcsm.sh.gov.cn/public/guide......

细胞与基因治疗|国家重点研发计划颠覆性技术创新重点专项申报指引

5月26日,京津冀国家技术创新中心发布《国家重点研发计划颠覆性技术创新重点专项2025年度细胞与基因治疗领域项目申报指引》。该项目面向基础性、战略性重大场景,聚焦细胞与基因治疗领域关键核心技术环节,形......

3D活细胞样本在轨长期冷冻保存首获突破

4月30日,神舟十九号飞船携空间站第八批空间科学实验样品顺利返回地球。其中,中国科学院深圳先进技术研究院(以下简称深圳先进院)医药所能量代谢与生殖研究中心雷晓华研究员团队的“太空微重力环境下人多能干细......

EVIDENT焕新亮相细胞年会,以奥伟登之名加速本土化战略

人工智能正以前所未有的速度重塑细胞生物学研究。从高分辨率成像到细胞行为动态分析,AI技术不仅提升了数据处理的精度与效率,同时随着AI与生物学、医学等学科的深度融合,其在细胞研究中的应用正不断突破边界,......

最高500万上海2025年度关键技术研发计划“细胞与基因治疗”项目开始申报

上海市科学技术委员会关于发布2025年度关键技术研发计划“细胞与基因治疗”项目申报指南的通知沪科指南〔2025〕5号各有关单位:为深入实施创新驱动发展战略,加快建设具有全球影响力的科技创新中心,根据《......

西湖大学连发两篇Nature破解复杂疾病细胞地图与线粒体转运之谜

描述疾病相关细胞的空间分布对于理解疾病病理学至关重要。近日,西湖大学杨剑团队在Nature在线发表题为“Spatiallyresolvedmappingofcellsassociatedwithhum......

生命科学领域再添国之重器:人类细胞谱系大科学研究设施启动建设

湾区再添"国之重器"3月25日,总投资逾30亿元的人类细胞谱系大科学研究设施在广州国际生物岛正式破土动工。作为国家"十四五"规划布局的重大科技基础设施,该项目将......

一种蛋白能调节细胞年轻与衰老态

日本大阪大学团队发现,接头蛋白复合物2α1亚基(AP2A1)能让细胞在年轻和衰老这两种状态之间切换,这意味着在逆转细胞衰老研究方面迈出了关键一步。相关论文发表于近期《细胞信号》杂志。随着年龄增长,衰老......

新型脑细胞会告诉我们何时停止进食

当小鼠摄入足够食物时,小鼠大脑中的神经元会告诉它们停止进食——人类可能也有同样的细胞,所以我们有朝一日可能会操纵这些细胞来帮助治疗肥胖症。相关研究成果发表于《细胞》。“我们试图解答的主要问题是大脑如何......